High speed error correction for continuous-variable quantum key distribution with multi-edge type LDPC code

Error correction is a significant step in postprocessing of continuous-variable quantum key distribution system, which is used to make two distant legitimate parties share identical corrected keys. We propose an experiment demonstration of high speed error correction with multi-edge type low-density parity check (MET-LDPC) codes based on graphic processing unit (GPU). GPU supports to calculate the messages of MET-LDPC codes simultaneously and decode multiple codewords in parallel. We optimize the memory structure of parity check matrix and the belief propagation decoding algorithm to reduce computational complexity. Our results show that GPU-based decoding algorithm greatly improves the error correction speed. For the three typical code rate, i.e., 0.1, 0.05 and 0.02, when the block length is 106 and the iteration number are 100, 150 and 200, the average error correction speed can be respectively achieved to 30.39 Mbits/s (over three times faster than previous demonstrations), 21.23 Mbits/s and 16.41 Mbits/s with 64 codewords decoding in parallel, which supports high-speed real-time continuous-variable quantum key distribution system.

[1]  Sébastien Kunz-Jacques,et al.  High performance error correction for quantum key distribution using polar codes , 2014, Quantum Inf. Comput..

[2]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.

[3]  Hong Guo,et al.  User-defined quantum key distribution , 2018, 1805.04249.

[4]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[5]  G Leuchs,et al.  Continuous variable quantum cryptography: beating the 3 dB loss limit. , 2002, Physical review letters.

[6]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[7]  Xiangyu Wang,et al.  Efficient rate-adaptive reconciliation for CV-QKD protocol , 2017, Quantum Inf. Comput..

[8]  Xiangyu Wang,et al.  Computing quopit Clifford circuit amplitudes by the sum-over-paths technique , 2016, Quantum Inf. Comput..

[9]  Hong Guo,et al.  High-Speed Implementation of Length-Compatible Privacy Amplification in Continuous-Variable Quantum Key Distribution , 2018, IEEE Photonics Journal.

[10]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[11]  David Elkouss,et al.  High-bit-rate continuous-variable quantum key distribution , 2014, 1406.1050.

[12]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[13]  David Elkouss,et al.  Key Reconciliation for High Performance Quantum Key Distribution , 2013, Scientific Reports.

[14]  P. Glenn Gulak,et al.  Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography , 2017, npj Quantum Information.

[15]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[16]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[17]  Sébastien Kunz-Jacques,et al.  Long Distance Continuous-Variable Quantum Key Distribution with a Gaussian Modulation , 2011, Physical Review A.

[18]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[19]  S. McLaughlin,et al.  Quantum key distribution over 25 km with an all-fiber continuous-variable system , 2007, 0706.4255.

[20]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[21]  Romain Alléaume,et al.  Multidimensional reconciliation for continuous-variable quantum key distribution , 2007, 2008 IEEE International Symposium on Information Theory.

[22]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[23]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[24]  Mei Li,et al.  Continuous-variable QKD over 50 km commercial fiber , 2017, Quantum Science and Technology.

[25]  T. Richardson,et al.  Multi-Edge Type LDPC Codes , 2004 .

[26]  A. R. Dixon,et al.  High speed and adaptable error correction for megabit/s rate quantum key distribution , 2014, Scientific Reports.

[27]  Christian Weedbrook,et al.  Quantum cryptography without switching. , 2004, Physical review letters.

[28]  Eleni Diamanti,et al.  Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations , 2015, Entropy.