TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell

Abstract Highly ordered TiO 2 nanotube arrays for hydrogen production have been synthesized by electrochemical anodization of titanium sheets. Under solar light irradiation, hydrogen generation by photocatalytic water splitting was carried out in the two-compartment photoelectrochemical cell without any external applied voltage. The hydrogen gas and oxygen generated on Pt side and on TiO 2 nanotubes side respectively were efficiently separated. The effect of anodization time on the morphology structures, photoelectrochemical properties and hydrogen production was systematically investigated. Due to more charge carrier generation and faster charge transfer, a maximum photoconversion efficiency of 4.13% and highest hydrogen production rate of 97 μmol h −1 cm −2 (2.32 mL h −1 cm −2 ) were obtained from TiO 2 nanotubes anodized for 60 min.

[1]  Somnath C. Roy,et al.  Synthesis and applications of electrochemically self-assembled titania nanotube arrays. , 2010, Physical chemistry chemical physics : PCCP.

[2]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[3]  Krishnan S. Raja,et al.  Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays , 2009 .

[4]  Y. Lai,et al.  Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting , 2010 .

[5]  G. Shi,et al.  Photoelectrochemical oxidation behavior of methanol on highly ordered TiO2 nanotube array electrodes , 2007 .

[6]  A. Nakajima,et al.  Processing and properties of transparent sulfated TiO2 thin films using sol–gel method , 2008 .

[7]  Jiaguo Yu,et al.  Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays , 2010 .

[8]  Xueping Gao,et al.  Structure Transformation and Photoelectrochemical Properties of TiO2 Nanomaterials Calcined from Titanate Nanotubes , 2009 .

[9]  Lifeng Liu,et al.  Continuous Fabrication of Free-Standing TiO2 Nanotube Array Membranes with Controllable Morphology for Depositing Interdigitated Heterojunctions , 2010 .

[10]  Claudio Ampelli,et al.  Synthesis of solar fuels by a novel photoelectrocatalytic approach , 2010 .

[11]  Wei-min Liu,et al.  Field emission from TiO2/Ti nanotube arrays with different morphologies , 2010 .

[12]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[13]  J. Macák,et al.  Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes , 2008 .

[14]  T. Peng,et al.  Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures , 2008 .

[15]  Zhiqun Lin,et al.  Dye-Sensitized TiO2 Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering , 2010 .

[16]  Hai-chao Liang,et al.  Effects of structure of anodic TiO(2) nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. , 2009, Journal of hazardous materials.

[17]  Nageh K. Allam,et al.  Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes , 2008 .

[18]  Craig A. Grimes,et al.  Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays , 2006 .

[19]  Jan M. Macak,et al.  Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes , 2006 .

[20]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[21]  S. Palmas,et al.  TiO2 photoanodes for electrically enhanced water splitting , 2010 .

[22]  Eunyoung Kim,et al.  Design of TiO2 nanotube array-based water-splitting reactor for hydrogen generation , 2008 .

[23]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[24]  Stable TiO2 nanotube arrays with high UV photoconversion efficiency , 2010 .

[25]  T. Veziroglu,et al.  Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts , 2005 .

[26]  D. W. Sheel,et al.  The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition , 2006 .

[27]  Zhonghai Zhang,et al.  Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation , 2010 .

[28]  P. Shukla,et al.  Study of modular PEC solar cells for photoelectrochemical splitting of water employing nanostructured TiO2 photoelectrodes , 2007 .

[29]  Antonio Miotello,et al.  Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting , 2008 .

[30]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[31]  Caolong Li,et al.  TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation , 2010 .

[32]  Y. Ku,et al.  Characterization and Induced Photocurrent of TiO2 Nanotube Arrays Fabricated by Anodization , 2010 .

[33]  M. Anpo,et al.  Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts , 2007 .

[34]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[35]  M. Misra,et al.  Efficient Photoelectrolysis of Water using TiO2 Nanotube Arrays by Minimizing Recombination Losses with Organic Additives , 2008 .

[36]  Lan Sun,et al.  Self-organized TiO2 nanotubes in mixed organic–inorganic electrolytes and their photoelectrochemical performance , 2009 .