Building Interfaces to Developing Cells and Organisms: From Cyborg Beetles to Synthetic Biology

This chapter contains sections titled: Introduction Example Interfaces Conclusions References

[1]  C. Tomlin,et al.  Mathematical Modeling of Planar Cell Polarity to Understand Domineering Nonautonomy , 2005, Science.

[2]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.

[3]  Kevin Knowles,et al.  Aerodynamic modelling of insect-like flapping flight for micro air vehicles , 2006 .

[4]  M. Blumenkranz,et al.  Localized chemical release from an artificial synapse chip. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Marc Madou,et al.  Lab on a CD. , 2006, Annual review of biomedical engineering.

[6]  S. Basu,et al.  A synthetic multicellular system for programmed pattern formation , 2005, Nature.

[7]  J. Pringle,et al.  The physiology of insect fibrillar muscle - I. Anatomy and innervation of the basalar muscle of lamellicorn beetles , 1959, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  Swapnil Chhabra,et al.  Biofuel alternatives to ethanol: pumping the microbial well. , 2008, Trends in biotechnology.

[9]  Michael B. Reiser,et al.  The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster , 2007, Journal of Experimental Biology.

[10]  J. Hubbell,et al.  Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering , 2005, Nature Biotechnology.

[11]  S. Shankar Sastry,et al.  Attitude control for a micromechanical flying insect via sensor output feedback , 2004, IEEE Transactions on Robotics and Automation.

[12]  Eric D. Miller,et al.  Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. , 2005, Biomaterials.

[13]  G. Whitesides,et al.  Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device , 2002, Nature Biotechnology.

[14]  R Kanzaki,et al.  A dual-channel FM transmitter for acquisition of flight muscle activities from the freely flying hawkmoth, Agrius convolvuli , 2002, Journal of Neuroscience Methods.

[15]  R. Josephson,et al.  Power output by an asynchronous flight muscle from a beetle. , 2000, The Journal of experimental biology.

[16]  Christopher A. Voigt,et al.  Environmentally controlled invasion of cancer cells by engineered bacteria. , 2006, Journal of molecular biology.

[17]  G. Goodhill,et al.  Generating controlled molecular gradients in 3D gels. , 2005, Biotechnology and bioengineering.

[18]  Rustem F Ismagilov,et al.  The chemistrode: A droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution , 2008, Proceedings of the National Academy of Sciences.

[19]  J. Keasling,et al.  Mathematical Model of the lac Operon: Inducer Exclusion, Catabolite Repression, and Diauxic Growth on Glucose and Lactose , 1997, Biotechnology progress.

[20]  Xiaofeng Cui,et al.  Application of inkjet printing to tissue engineering , 2006, Biotechnology journal.

[21]  M. S. Tu,et al.  The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina) , 1996, Journal of Comparative Physiology A.

[22]  M. Maharbiz,et al.  A microsystem for sensing and patterning oxidative microgradients during cell culture. , 2006, Lab on a chip.

[23]  Rustem F Ismagilov,et al.  Can we build synthetic, multicellular systems by controlling developmental signaling in space and time? , 2007, Current opinion in chemical biology.

[24]  Th. W. Engelmann,et al.  Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und thierischer Organismen , 1881, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[25]  T. Boland,et al.  Inkjet printing for high-throughput cell patterning. , 2004, Biomaterials.

[26]  W. Kirchner,et al.  Honeybees can be recruited by a mechanical model of a dancing bee , 1989, Naturwissenschaften.

[27]  Justin Lenhart,et al.  Patterned delivery and expression of gene constructs into zebrafish embryos using microfabricated interfaces , 2009, Biomedical microdevices.

[28]  D. Pines,et al.  Challenges Facing Future Micro-Air-Vehicle Development , 2006 .

[29]  James K. Chen,et al.  Chemical technologies for probing embryonic development. , 2008, Chemical Society reviews.

[30]  T. Brown,et al.  Development of an inducible three colour bacterial water colour system , 2007 .

[31]  O. Hermanson,et al.  Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. , 2007, Biomaterials.

[32]  Ertugrul M. Ozbudak,et al.  Multistability in the lactose utilization network of Escherichia coli , 2004, Nature.

[33]  Hirotaka Sato,et al.  Remote Radio Control of Insect Flight , 2009, Frontiers in integrative neuroscience.

[34]  Sanjay P Sane,et al.  The aerodynamics of insect flight , 2003, Journal of Experimental Biology.

[35]  S. Sane,et al.  Antennal Mechanosensors Mediate Flight Control in Moths , 2007, Science.

[36]  Dirk Trauner,et al.  Light-induced depolarization of neurons using a modified Shaker K(+) channel and a molecular photoswitch. , 2006, Journal of neurophysiology.

[37]  M. Maharbiz,et al.  Generating steep, shear-free gradients of small molecules for cell culture , 2009, Biomedical microdevices.

[38]  Shuichi Takayama,et al.  Computerized microfluidic cell culture using elastomeric channels and Braille displays. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. Ellis‐Davies,et al.  Caged compounds: photorelease technology for control of cellular chemistry and physiology , 2007, Nature Methods.

[40]  Sarit B. Bhaduri,et al.  Drop-on-demand printing of cells and materials for designer tissue constructs , 2007 .

[41]  Roland Zengerle,et al.  The centrifugal microfluidic Bio-Disk platform , 2007 .

[42]  J. Hildebrand,et al.  Organization of the antennal motor system in the sphinx moth Manduca sexta , 1997, Cell and Tissue Research.

[43]  Stanislas Leibler,et al.  Printing Multistrain Bacterial Patterns with a Piezoelectric Inkjet Printer , 2007, PloS one.

[44]  B. Derby,et al.  Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. , 2008, Biomaterials.

[45]  G K Taylor,et al.  Mechanics and aerodynamics of insect flight control , 2001, Biological reviews of the Cambridge Philosophical Society.

[46]  Günter Mayer,et al.  Biologically active molecules with a "light switch". , 2006, Angewandte Chemie.

[47]  Michel M. Maharbiz,et al.  A Modified Consumer Inkjet for Spatiotemporal Control of Gene Expression , 2009, PloS one.

[48]  Kimberly A. Smith,et al.  POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer , 2004, Genome Biology.

[49]  B. Chung,et al.  Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber , 2007, Biomedical microdevices.

[50]  M. Mackey,et al.  Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data. , 2003, Biophysical journal.

[51]  A. Jadbabaie,et al.  Analysis of the Lactose metabolism in E. coli using sum-of-squares decomposition , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[52]  R. Josephson,et al.  Asynchronous muscle: a primer. , 2000, The Journal of experimental biology.

[53]  T. Pollard Polymerization of ADP-actin , 1984, The Journal of cell biology.

[54]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[55]  S. Boyden THE CHEMOTACTIC EFFECT OF MIXTURES OF ANTIBODY AND ANTIGEN ON POLYMORPHONUCLEAR LEUCOCYTES , 1962, The Journal of experimental medicine.

[56]  Wei Shyy,et al.  Flapping and flexible wings for biological and micro air vehicles , 1999 .

[57]  Y. Mishina,et al.  BMP signaling and early embryonic patterning. , 2005, Cytokine & growth factor reviews.

[58]  A. Folch,et al.  Biomolecular gradients in cell culture systems. , 2008, Lab on a chip.