Rendering Discrete Participating Media with Geometrical Optics Approximation

[1]  Steve Marschner,et al.  Learning generative models for rendering specular microgeometry , 2019, ACM Trans. Graph..

[2]  Yanwen Guo,et al.  Fractional gaussian fields for modeling and rendering of spatially-correlated media , 2019, ACM Trans. Graph..

[3]  Xi Deng,et al.  Photon surfaces for robust, unbiased volumetric density estimation , 2019, ACM Trans. Graph..

[4]  Iliyan Georgiev,et al.  A null-scattering path integral formulation of light transport , 2019, ACM Trans. Graph..

[5]  Z. Cui,et al.  Geometrical optics approximation for forward light scattering by a large chiral sphere , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[6]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[7]  Eugene d'Eon,et al.  A Reciprocal Formulation of Nonexponential Radiative Transfer. 2: Monte Carlo Estimation and Diffusion Approximation , 2018, Journal of Computational and Theoretical Transport.

[8]  Steve Marschner,et al.  A radiative transfer framework for non-exponential media , 2018, ACM Trans. Graph..

[9]  Lu Wang,et al.  Fast Global Illumination with Discrete Stochastic Microfacets Using a Filterable Model , 2018, Comput. Graph. Forum.

[10]  Steve Marschner,et al.  Rendering specular microgeometry with wave optics , 2018, ACM Trans. Graph..

[11]  Yanwen Guo,et al.  A Physically‐based Appearance Model for Special Effect Pigments , 2018, Comput. Graph. Forum.

[12]  Diego Gutierrez,et al.  A radiative transfer framework for spatially-correlated materials , 2018, ACM Trans. Graph..

[13]  Fabrice Neyret,et al.  A new microflake model with microscopic self‐shadowing for accurate volume downsampling , 2018, Comput. Graph. Forum.

[14]  Mateu Sbert,et al.  Multiple Scattering in Inhomogeneous Participating Media Using Rao‐Blackwellization and Control Variates , 2018, Comput. Graph. Forum.

[15]  Johannes Hanika,et al.  Monte Carlo Methods for Volumetric Light Transport Simulation , 2018, Comput. Graph. Forum.

[16]  Eugene d'Eon,et al.  A Reciprocal Formulation of Nonexponential Radiative Transfer. 1: Sketch and Motivation , 2018, ArXiv.

[17]  Miguel A. Otaduy,et al.  An Appearance Model for Textile Fibers , 2017, Comput. Graph. Forum.

[18]  Wenzel Jakob,et al.  Scratch iridescence: Wave-optical rendering of diffractive surface structure , 2017 .

[19]  Thomas Müller,et al.  Efficient rendering of heterogeneous polydisperse granular media , 2016, ACM Trans. Graph..

[20]  Frédo Durand,et al.  Downsampling scattering parameters for rendering anisotropic media , 2016, ACM Trans. Graph..

[21]  Shuang Zhao,et al.  Fitting procedural yarn models for realistic cloth rendering , 2016, ACM Trans. Graph..

[22]  Pascal Barla,et al.  Multi-scale rendering of scratched materials using a structured SV-BRDF model , 2016, ACM Trans. Graph..

[23]  Steve Marschner,et al.  Position-normal distributions for efficient rendering of specular microstructure , 2016, ACM Trans. Graph..

[24]  Jakob Andreas Bærentzen,et al.  Interactive Appearance Prediction for Cloudy Beverages , 2016, MAM@EGSR.

[25]  Jonathan Dupuy,et al.  Additional Progress Towards the Unification of Microfacet and Microflake Theories , 2016, EGSR.

[26]  Steve Marschner,et al.  Matching Real Fabrics with Micro-Appearance Models , 2015, ACM Trans. Graph..

[27]  Steve Marschner,et al.  Multi-scale modeling and rendering of granular materials , 2015, ACM Trans. Graph..

[28]  Carsten Dachsbacher,et al.  The SGGX microflake distribution , 2015, ACM Trans. Graph..

[29]  Steve Marschner,et al.  Discrete stochastic microfacet models , 2014, ACM Trans. Graph..

[30]  Derek Nowrouzezahrai,et al.  Unifying points, beams, and paths in volumetric light transport simulation , 2014, ACM Trans. Graph..

[31]  Steve Marschner,et al.  Rendering glints on high-resolution normal-mapped specular surfaces , 2014, ACM Trans. Graph..

[32]  Shuang Zhao,et al.  Inverse volume rendering with material dictionaries , 2013, ACM Trans. Graph..

[33]  Derek Nowrouzezahrai,et al.  State of the art in photon density estimation , 2013, SA '13.

[34]  Kecheng Yang,et al.  Light scattering by a spheroidal bubble with geometrical optics approximation , 2012 .

[35]  Steve Marschner,et al.  Structure-aware synthesis for predictive woven fabric appearance , 2012, ACM Trans. Graph..

[36]  Francisco J. Serón,et al.  Physically-based simulation of rainbows , 2012, TOGS.

[37]  Matthias Zwicker,et al.  Progressive photon beams , 2011, ACM Trans. Graph..

[38]  Steve Marschner,et al.  Building volumetric appearance models of fabric using micro CT imaging , 2011, ACM Trans. Graph..

[39]  Derek Nowrouzezahrai,et al.  A comprehensive theory of volumetric radiance estimation using photon points and beams , 2011, TOGS.

[40]  Jonathan T. Moon,et al.  A radiative transfer framework for rendering materials with anisotropic structure , 2010, ACM Trans. Graph..

[41]  Jianqi Shen,et al.  Geometrical optics approximation for light scattering by absorbing spherical particles , 2009 .

[42]  Jianqi Shen,et al.  Geometrical optics approximation of light scattering by large air bubbles , 2008 .

[43]  Holly Rushmeier,et al.  Input for participating media , 2008, SIGGRAPH '08.

[44]  Matthias Zwicker,et al.  The Beam Radiance Estimate for Volumetric Photon Mapping , 2008, SIGGRAPH '08.

[45]  Bin Yang,et al.  Scattering by large bubbles: Comparisons between geometrical-optics theory and Debye series , 2007 .

[46]  Niels Jørgen Christensen,et al.  Computing the scattering properties of participating media using Lorenz-Mie theory , 2007, ACM Trans. Graph..

[47]  Steve Marschner,et al.  Eurographics Symposium on Rendering (2007) Jan Kautz and Sumanta Pattanaik (Editors) Abstract Rendering Discrete Random Media Using Precomputed Scattering Solutions , 2022 .

[48]  Laurent Pilon,et al.  Efficiency factors and radiation characteristics of spherical scatterers in an absorbing medium. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[49]  Dominique Baillis,et al.  Modeling radiation characteristics of semitransparent media containing bubbles or particles. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[50]  Ingo Wald,et al.  Ray tracing animated scenes using coherent grid traversal , 2006, ACM Trans. Graph..

[51]  Paul E. Debevec,et al.  Acquisition of time-varying participating media , 2005, ACM Trans. Graph..

[52]  Francisco J. Serón,et al.  A survey on participating media rendering techniques , 2005, The Visual Computer.

[53]  Carles Bosch,et al.  A Physically‐Based Model for Rendering Realistic Scratches , 2004, Comput. Graph. Forum.

[54]  David S. Ebert,et al.  Efficient Rendering of Atmospheric Phenomena , 2004, Rendering Techniques.

[55]  Knut Stamnes,et al.  Geometrical-optics code for computing the optical properties of large dielectric spheres. , 2003, Applied optics.

[56]  Philip Laven,et al.  Simulation of rainbows, coronas, and glories by use of Mie theory. , 2003, Applied optics.

[57]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[58]  Yoshinori Dobashi,et al.  Modeling and rendering of various natural phenomena consisting of particles , 2001, Proceedings. Computer Graphics International 2001.

[59]  Jean-Michel Dischler,et al.  Surface scratches: measuring, modeling and rendering , 2001, The Visual Computer.

[60]  Alexander Keller,et al.  Metropolis Light Transport for Participating Media , 2000, Rendering Techniques.

[61]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.

[62]  Bertram Walter,et al.  Modeling and Rendering of the Atmosphere Using Mie‐Scattering , 1997, Comput. Graph. Forum.

[63]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[64]  Yves D. Willems,et al.  Rendering Participating Media with Bidirectional Path Tracing , 1996, Rendering Techniques.

[65]  D. Toublanc,et al.  Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations. , 1996, Applied optics.

[66]  Patrick Callet,et al.  Pertinent Data for Modelling Pigmented Materials in Realistic Rendering , 1996, Comput. Graph. Forum.

[67]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[68]  James R. Arvo,et al.  Transfer Equations in Global Illumination , 1993 .

[69]  E. Hovenac Calculation of far-field scattering from nonspherical particles using a geometrical optics approach. , 1991, Applied optics.

[70]  V. Cachorro,et al.  New Improvements for Mie Scattering Calculations , 1991, Journal of Electromagnetic Waves and Applications.

[71]  John Amanatides,et al.  A Fast Voxel Traversal Algorithm for Ray Tracing , 1987, Eurographics.

[72]  P. Barber Absorption and scattering of light by small particles , 1984 .

[73]  G Gouesbet,et al.  Comparisons between geometrical optics and Lorenz-Mie theory. , 1981, Applied optics.

[74]  S. H. Chen,et al.  Light scattering from water droplets in the geometrical optics approximation. , 1981, Applied optics.

[75]  Craig F. Bohren,et al.  Extinction by a spherical particle in an absorbing medium , 1979 .

[76]  R. Dobbins,et al.  Ripple structure of the extinction coefficient. , 1977, Applied optics.

[77]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[78]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .