SYNTHESIS OF NOVEL BISPHENOL-BIPHENANTHROLINE-BASED MOLECULAR TWEEZERS

1,10-fenantrolin’den elde edilen "dugdugi" 8 molekulu sentezlendi ve NMR, EIMS ve UV kullanilarak yapisi aydinlatildi. Bisfenol 8’I elde etmek icin 1,3dibrompropan kullanilarak alkillendi ve 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol ile reaksiyona sokuldu. Molekul 8’in 30 molL-1 cozeltisi %10 DMF iceren etanolde hazirlandi, ve etanol ile hazirlanmis 30 m L-1 Co2+, Cr3+, Cu2+, Fe3+, Mn2+, Ni2+, Ag+, and Zn2+ cozeltisi ile 30 dakika karistirildi.Kemosensor 8, Fe3+ varliginda pembe renk vererek calisirken, diger metallerin varliginda ayirt edici bir renk gozlenmedi. "Dugdugi" nin molekuler UV spektrumunda 279 nm’de bulunan pik Fe3+ ile etkilestirilince 290 nm’ye kaydi. Ayrica, 524 nm’de yeni bir pik olustugu goruldu

[1]  J. Niu,et al.  A rhodamine-based fluorescent enhancement chemosensor for the detection of Cr3+ in aqueous media , 2013 .

[2]  Xiao‐Qi Yu,et al.  Dianthracene-cyclen conjugate: the first equal-equivalent responding fluorescent chemosensor for Pb2+ in aqueous solution. , 2013, The Analyst.

[3]  Dawei Zhang,et al.  A proof-of-concept fluorescent strategy for highly selective detection of Cr(VI) based on inner filter effect using a hydrophilic ionic chemosensor , 2013 .

[4]  Jinqing Qu,et al.  A naked-eye chemosensor for fluoride ions: a selective easy-to-prepare test paper. , 2013, Organic & biomolecular chemistry.

[5]  P. Yi,et al.  One-pot fabrication of polymer nanoparticle-based chemosensors for Cu2+ detection in aqueous media , 2013 .

[6]  C. Redshaw,et al.  An NBD-armed thiacalix[4]arene-derived colorimetric and fluorometric chemosensor for Ag+: a metal-ligand receptor of anions. , 2013, Dalton transactions.

[7]  Ljiljana M. Rajić,et al.  Correlation of different pollution criteria in the assessment of metal sediment pollution , 2013, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[8]  Z. Su,et al.  Schiff-base as highly sensitive and reversible chemosensors for HCl gas , 2013 .

[9]  M. Hundal,et al.  Dual channel chromo/fluorogenic chemosensors for cyanide and fluoride ions--an example of in situ acid catalysis of the Strecker reaction for cyanide ion chemodosimetry. , 2013, Organic & biomolecular chemistry.

[10]  P. K. Bharadwaj,et al.  A chemosensor built with rhodamine derivatives appended to an aromatic platform via 1,2,3-triazoles: dual detection of aluminum(III) and fluoride/acetate ions. , 2013, Inorganic chemistry.

[11]  Erhan Zor,et al.  Spectrophotometric and voltammetric characterization of a novel selective electroactive chemosensor for Mg2+ , 2013 .

[12]  Félix Sancenón,et al.  Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011. , 2011, Chemical Society reviews.

[13]  Xiaogong Wang,et al.  Polystyrene microsphere-based lanthanide luminescent chemosensor for detection of organophosphate pesticides , 2012 .

[14]  Xiufang Cao,et al.  Novel salicylic acid-oriented thiourea-type receptors as colorimetric chemosensor: synthesis, characterizations and selective naked-eye recognition properties. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[15]  M. Bayrakci,et al.  Synthesis and Spectroscopic Studies of Novel Rhodanine Azo Dyes: An Excellent Selective Chemosensor for Naked-eye Detecting of Cu2+ Ion. , 2012, Acta chimica Slovenica.

[16]  Juyoung Yoon,et al.  Fluorescent and Colorimetric Sensors for Detection of Lead, Cadmium, and Mercury Ions , 2012 .

[17]  Mingming Yu,et al.  A fluorescent color/intensity changed chemosensor for Fe3+ by photo-induced electron transfer (PET) inhibition of fluoranthene derivative , 2012 .

[18]  Demei Tian,et al.  Synthesis of a pyridyl-appended calix[4]arene and its application to the modification of silver nanoparticles as an Fe3+ colorimetric sensor , 2012 .

[19]  K. P. Elango,et al.  Spectroscopic studies on the intermolecular charge transfer interaction of Fe(II)- and Fe(III)-phthalocyanines with 2,3,5,6-tetrachloro-1,4-benzoquinone and its application in colorimetric sensing of amino acids and amines. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[20]  R. Martínez‐Máñez,et al.  Dyes That Bear Thiazolylazo Groups as Chromogenic Chemosensors for Metal Cations , 2012 .

[21]  Dongbin Wei,et al.  Design and application of Fe3+ probe for “naked-eye” colorimetric detection in fully aqueous system , 2011 .

[22]  Ekkehard Sinn,et al.  Fluorescein-based fluorescent and colorimetric chemosensors for copper in aqueous media , 2011 .

[23]  W. Verboom,et al.  Selective chemosensor based on 7-nitrobenzofurazan in tripodal structure for the detection of Hg(II) ions in environmental and cosmetic samples , 2011 .

[24]  Shu-Pao Wu,et al.  Colorimetric detection of Fe3+ ions using pyrophosphate functionalized gold nanoparticles. , 2011, The Analyst.

[25]  Juyoung Yoon,et al.  New 7-Hydroxycoumarin-Based Fluorescent Chemosensors for Zn(II) and Cd(II) , 2010 .

[26]  A. Rutherford,et al.  Intramolecular light induced activation of a Salen-Mn(III) complex by a ruthenium photosensitizer. , 2010, Chemical communications.

[27]  Fuyou Li,et al.  Phosphorescent chemosensors based on heavy-metal complexes. , 2010, Chemical Society reviews.

[28]  Wen Guo,et al.  Fluorescent Chemosensors for Toxic Organophosphorus Pesticides: A Review , 2010, Sensors.

[29]  Kasi Pitchumani,et al.  Naked-eye detection of Fe3+ and Ru3+ in water: Colorimetric and ratiometric sensor based on per-6-amino-β-cyclodextrin/p-nitrophenol , 2010 .

[30]  Narinder Singh,et al.  Benzimidazole-based ratiometric fluorescent receptor exhibiting molecular logic gate for Cu2+ and Fe3+ , 2009 .

[31]  C. P. Rao,et al.  1-(d-Glucopyranosyl-2′-deoxy-2′-iminomethyl)-2-hydroxynaphthalene as chemo-sensor for Fe3+ in aqueous HEPES buffer based on colour changes observable with the naked eye , 2009 .

[32]  Deqing Zhang,et al.  Fluorescence "turn on" chemosensors for Ag+ and Hg2+ based on tetraphenylethylene motif featuring adenine and thymine moieties. , 2008, Organic letters.

[33]  A. Tong,et al.  Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. , 2008, Talanta.

[34]  Yongbing He,et al.  Synthesis and Chiral Recognition Properties of Novel Fluorescent Chemosensors for Amino Acid , 2008, Journal of Fluorescence.

[35]  Liheng Feng,et al.  Selective sensing of Fe3+ based on fluorescence quenching by 2,6-bis(benzoxazolyl)pyridine with beta-cyclodextrin in neutral aqueous solution. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[36]  D. Ramaiah,et al.  Dual-mode semisquaraine-based sensor for selective detection of Hg2+ in a micellar medium. , 2007, Organic letters.

[37]  A. Ojida,et al.  Design and Synthesis of Bis(Zn(II)—Dipicolylamine)‐Based Fluorescent Artificial Chemosensors for Phosphorylated Proteins/Peptides , 2006 .

[38]  A. Tong,et al.  A new rhodamine-based chemosensor exhibiting selective Fe(III)-amplified fluorescence. , 2006, Organic letters.

[39]  Q. Guo,et al.  Novel highly selective fluorescent chemosensors for Zn(II) , 2006 .

[40]  R. Martínez‐Máñez,et al.  Fluorogenic and Chromogenic Chemosensors and Reagents for Anions , 2004 .

[41]  L. Tei,et al.  Redox chemosensors: coordination chemistry towards CuII, ZnII, CdII, HgII, and PbII of 1-aza-4,10-dithia-7-oxacyclododecane ([12]aneNS2O) and its N-ferrocenylmethyl derivativeElectronic supplementary information (ESI) available: synthetic details including analytical and spectroscopic data for the i , 2003 .

[42]  Jun‐Min Liu,et al.  A new fluorescent chemosensor for Fe3+ and Cu2+ based on calix[4]arene , 2002 .

[43]  Françisco M Raymo,et al.  All-optical processing with molecular switches , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Robert Beer The encyclopedia of Tibetan symbols and motifs , 1999 .

[45]  E. Akkaya Squaraine-Based Long Wavelength Fluorescent Chemosensors for Ions , 1997 .