Latin Hypercube Sampling and Fibonacci Based Lattice Method Comparison for Computation of Multidimensional Integrals
暂无分享,去创建一个
[1] Wojciech Jarosz,et al. Efficient Monte Carlo methods for light transport in scattering media , 2008 .
[2] A. Saltelli,et al. Exploring multi-dimensional spaces: a Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Techniques , 2015, 1505.02350.
[3] I. Sloan,et al. Low discrepancy sequences in high dimensions: How well are their projections distributed? , 2008 .
[4] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[5] Harald Niederreiter,et al. Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .
[6] I. Sloan,et al. Lattice methods for multiple integration: theory, error analysis and examples , 1987 .
[7] Dirk P. Kroese,et al. Handbook of Monte Carlo Methods , 2011 .
[8] M. D. McKay,et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .
[9] I. Dimov,et al. Error analysis of an adaptive Monte Carlo method for numerical integration , 1998 .
[10] N. Metropolis,et al. The Monte Carlo method. , 1949 .