An Evaluation of a Visual Analytics Prototype for Calendar-Related Spatiotemporal Periodicity Detection and Analysis

Whether it is sunrise, the weekend, or Christmas, some form of temporal structure or periodic pattern governs our daily activities. Understanding them is essential to making sense of human activity, because they frame normality and allow us to identify abnormalities. However, cultural heterogeneity and scale greatly complicate our ability to uncover and understand human activity at a given time within a region. Current research in the field of visual analytics and geography provide methods of addressing spatiotemporal periodicity, but they fall short in providing access to multiple spatial and temporal scales via a relevant calendar. In response to these shortcomings, we developed PerSE (periodicity in spatio-temporal events), a coordinated-view Web application designed to aid users in the detection and analysis of calendar-related periodicity in spatiotemporal event data sets. Given the complexity of such a visualization tool, this paper focuses on the usability and learnability of PerSE. We evaluated the tool through a 20-participant study that consisted of training, a multiple-choice test, and the System Usability Scale. Our analysis of the results shows that the complex combination of visual tools and multi-scale, multi-calendar capability used within PerSE is effective, but still in need of usability improvements.RÉSUMÉ:Que ce soit le lever du soleil, la fin de semaine ou la fête de Noël, certains marqueurs de temps ou de périodicité régissent nos activités quotidiennes. La compréhension de cette structure est essentielle à celle de l’activité humaine, puisqu’elle encadre la normalité et nous permet de relever les anomalies. Toutefois, l’hétérogénéité culturelle et l’échelle compliquent grandement notre travail de découverte et de compréhension l’activité humaine à une époque donnée, dans une région donnée. Les recherches actuelles dans le domaine de l’analytique et de la géographie visuelles livrent des méthodes pour envisager la périodicité spatiotemporelle, mais elles ne nous permettent pas d’accéder à de multiples échelles spatiales et temporelles au moyen d’un calendrier pertinent. Afin de remédier à ces failles, les auteurs ont mis au point le PerSE (periodicity in spatiotemporal events—périodicité des événements spatiotemporels), une application Web de vision coordonnée conçue pour aider les utilisateurs à détecter et analyser la périodicité liée au calendrier dans des ensembles de données événementielles spatiotemporelles. Compte tenu de la complexité d’un tel outil de visualisation, l’étude est axée sur la simplicité d’emploi et d’apprentissage (convivialité) du PerSE. Les auteurs évaluent l’outil dans le cadre d’une étude à laquelle prennent part 20 participants et qui fait intervenir une formation, un questionnaire à choix multiples et une échelle permettant de mesurer la convivialité du système (System Usability Scale). L’analyse des résultats révèle que l’agencement complexe des outils visuels et de la capacité multi-échelle, multi-calendrier utilisés dans le PerSE est efficace, mais que sa convivialité demeure perfectible.

[1]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[2]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[3]  Anthony C. Robinson,et al.  Visual Exploration and Analysis of Historic Hotel Visits , 2007, Inf. Vis..

[4]  Dianne Cook,et al.  Glyph‐maps for visually exploring temporal patterns in climate data and models , 2012 .

[5]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[6]  Marc Alexa,et al.  Visualizing time-series on spirals , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[7]  Alan J. Dix,et al.  An explorative analysis of user evaluation studies in information visualisation , 2006, BELIV '06.

[8]  John V. Carlis,et al.  Interactive visualization of serial periodic data , 1998, UIST '98.

[9]  Anselm L. Strauss,et al.  Basics of qualitative research : techniques and procedures for developing grounded theory , 1998 .

[10]  Cláudio T. Silva,et al.  Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips , 2013, IEEE Transactions on Visualization and Computer Graphics.

[11]  Clionadh Raleigh,et al.  Introducing ACLED: An Armed Conflict Location and Event Dataset , 2010 .

[12]  Gennady L. Andrienko,et al.  Spatio-temporal aggregation for visual analysis of movements , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[13]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[14]  E. G. Richards,et al.  Mapping Time: The Calendar and Its History , 1998 .

[15]  Chris Weaver,et al.  Multidimensional visual analysis using cross-filtered views , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[16]  Philip T. Kortum,et al.  Determining what individual SUS scores mean: adding an adjective rating scale , 2009 .

[17]  M. A. Z. Mughal Calendars Tell History: Social Rhythm and Social Change in Rural Pakistan , 2014 .

[18]  David S. Ebert,et al.  A Mobile Visual Analytics Approach for Law Enforcement Situation Awareness , 2014, 2014 IEEE Pacific Visualization Symposium.

[19]  David S. Ebert,et al.  A correlative analysis process in a visual analytics environment , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[20]  Heidrun Schumann,et al.  Visual Methods for Analyzing Time-Oriented Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[21]  M. Sheelagh T. Carpendale,et al.  Empirical Studies in Information Visualization: Seven Scenarios , 2012, IEEE Transactions on Visualization and Computer Graphics.

[22]  James T. Miller,et al.  An Empirical Evaluation of the System Usability Scale , 2008, Int. J. Hum. Comput. Interact..

[23]  Diansheng Guo,et al.  Supporting the Process of Exploring and Interpreting Space–Time Multivariate Patterns: The Visual Inquiry Toolkit , 2008, Cartography and geographic information science.

[24]  Sriram Subramanian,et al.  Talking about tactile experiences , 2013, CHI.

[25]  J. B. Brooke,et al.  SUS: A 'Quick and Dirty' Usability Scale , 1996 .

[26]  D. Peuquet It's About Time: A Conceptual Framework for the Representation of Temporal Dynamics in Geographic Information Systems , 1994 .

[27]  J. V. van Wijk,et al.  Cluster and calendar based visualization of time series data , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[28]  Xiao Zhang,et al.  SensePlace2: GeoTwitter analytics support for situational awareness , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[29]  Jeffrey M. Zacks,et al.  Event structure in perception and conception. , 2001, Psychological bulletin.

[30]  N. Munn The Cultural Anthropology of Time: A Critical Essay , 1992 .

[31]  Silvia Miksch,et al.  Hierarchical Temporal Patterns and Interactive Aggregated Views for Pixel-Based Visualizations , 2009, 2009 13th International Conference Information Visualisation.

[32]  William Buxton,et al.  Usability evaluation considered harmful (some of the time) , 2008, CHI.

[33]  Robert E. Roth,et al.  Interacting with maps: The science and practice of cartographic interaction , 2011 .