Multiple brain regions cooperate in sequential saccade generation

We model control of voluntary saccades to visual and remembered targets in terms of interactions between the basal ganglia (caudate and substantia nigra), superior colliculus, mediodorsal thalamus, posterior parietal cortex, frontal eye fields and the saccade generator of the brainstem. These interactions include modulation of topographic inhibitory masks that manage motor field activity, dynamic remapping of sensory maps onto the eye motor map to take account of eye movements, and sustained neural activity that embodies spatial memory. Models of these mechanisms implemented in NSL (our Neural Simulation Language) simulate behavior and neural activity described in the literature, and suggest new experiments.

[1]  J. Joseph,et al.  Role of the dorsolateral prefrontal cortex in organizing visually guided behavior. , 1989, Brain, behavior and evolution.

[2]  J M Fuster,et al.  Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. , 1973, Brain research.

[3]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[4]  C. Scudder A new local feedback model of the saccadic burst generator. , 1988, Journal of neurophysiology.

[5]  D L Sparks,et al.  Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. , 1986, Physiological reviews.

[6]  D. Sparks,et al.  Dissociation of visual and saccade-related responses in superior colliculus neurons. , 1980, Journal of neurophysiology.

[7]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[8]  P. Goldman-Rakic,et al.  Organization of the nigrothalamocortical system in the rhesus monkey , 1985, The Journal of comparative neurology.

[9]  D. Noton,et al.  Eye movements and visual perception. , 1971, Scientific American.

[10]  D L Sparks,et al.  Spatial localization of saccade targets. II. Activity of superior colliculus neurons preceding compensatory saccades. , 1983, Journal of neurophysiology.

[11]  R. Andersen,et al.  The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. , 1988, Canadian journal of physiology and pharmacology.

[12]  S. Amari,et al.  Dynamic Interactions in Neural Networks: Models and Data , 1988, Research Notes in Neural Computing.

[13]  RICHARD L. DIDDAY,et al.  Eye Movements and Visual Perception: A "Two Visual System" Model , 1975, Int. J. Man Mach. Stud..

[14]  M. Goldberg,et al.  Functional properties of corticotectal neurons in the monkey's frontal eye field. , 1987, Journal of neurophysiology.

[15]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[16]  Edmund T. Rolls,et al.  Neuronal Activity in the Ventral Striatum of the Primate , 1987 .

[17]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[18]  D. Sparks,et al.  Spatial localization of saccade targets. I. Compensation for stimulation-induced perturbations in eye position. , 1983, Journal of neurophysiology.

[19]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. , 1989, Journal of neurophysiology.

[20]  Okihide Hikosaka,et al.  Role of basal ganglia in initiation of voluntary movements , 1988 .

[21]  G. Schneider Two visual systems. , 1969, Science.

[22]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[23]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[24]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[25]  G. E. Alexander,et al.  Effects of cooling prefrontal cortex on cell firing in the nucleus medialis dorsalis. , 1973, Brain research.

[26]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. , 1983, Journal of neurophysiology.

[27]  R. Didday A model of visuomotor mechanisms in the frog optic tectum , 1976 .

[28]  D. Robinson Oculomotor unit behavior in the monkey. , 1970, Journal of neurophysiology.

[29]  Michael A. Arbib,et al.  The metaphorical brain 2 - neural networks and beyond (2. ed.) , 1972 .

[30]  L E Mays,et al.  Signal transformations required for the generation of saccadic eye movements. , 1990, Annual review of neuroscience.

[31]  M E Goldberg,et al.  Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields , 1988, The Journal of comparative neurology.

[32]  C. Gerfen The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. , 1989, Science.

[33]  C. Bruce,et al.  Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons , 1988, The Journal of comparative neurology.

[34]  Michael E. Goldberg,et al.  Physiology of the frontal eye fields , 1984, Trends in Neurosciences.

[35]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[36]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. II. Visual responses related to fixation of gaze. , 1983, Journal of neurophysiology.