Action of Möbius transformations on homeomorphisms: Stability and rigidity

[1]  Mathématiques DE L’I.H.É.S,et al.  Quasi-conformal mappings inn-space and the rigidity of hyperbolic space forms , 1968 .

[2]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[3]  G. Mostow Strong Rigidity of Locally Symmetric Spaces. , 1973 .

[4]  Gopal Prasad Strong rigidity ofQ-rank 1 lattices , 1973 .

[5]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[6]  G. Mostow Strong Rigidity of Locally Symmetric Spaces. (AM-78) , 1974 .

[7]  W. Rudin Function Theory in the Unit Ball of Cn , 1980 .

[8]  Dennis Sullivan,et al.  On The Ergodic Theory at Infinity of an Arbitrary Discrete Group of Hyperbolic Motions , 1981 .

[9]  Stephen Agard,et al.  A geometric proof of Mostow's rigidity theorem for groups of divergence type , 1983 .

[10]  The Nielsen Realization Problem , 1983 .

[11]  P. Tukia Differentiability and rigidity of Möbius groups , 1985 .

[12]  A. Douady,et al.  Conformally natural extension of homeomorphisms of the circle , 1986 .

[13]  S. Agard Mostow rigidity on the line: A survey , 1988 .

[14]  G. Folland Harmonic analysis in phase space , 1989 .

[15]  G. Folland Harmonic Analysis in Phase Space. (AM-122), Volume 122 , 1989 .

[16]  P. Tukia MOSTOW-RIGIDITY AND NON-COMPACT HYPERBOLIC MANIFOLDS , 1991 .

[17]  M. Gromov,et al.  Rigidity of lattices: An introduction , 1991 .

[18]  R. Benedetti,et al.  Lectures on Hyperbolic Geometry , 1992 .

[19]  R. Penner Universal Constructions in Teichmüller Theory , 1993 .