Action of Möbius transformations on homeomorphisms: Stability and rigidity
暂无分享,去创建一个
[1] Mathématiques DE L’I.H.É.S,et al. Quasi-conformal mappings inn-space and the rigidity of hyperbolic space forms , 1968 .
[2] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[3] G. Mostow. Strong Rigidity of Locally Symmetric Spaces. , 1973 .
[4] Gopal Prasad. Strong rigidity ofQ-rank 1 lattices , 1973 .
[5] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[6] G. Mostow. Strong Rigidity of Locally Symmetric Spaces. (AM-78) , 1974 .
[7] W. Rudin. Function Theory in the Unit Ball of Cn , 1980 .
[8] Dennis Sullivan,et al. On The Ergodic Theory at Infinity of an Arbitrary Discrete Group of Hyperbolic Motions , 1981 .
[9] Stephen Agard,et al. A geometric proof of Mostow's rigidity theorem for groups of divergence type , 1983 .
[10] The Nielsen Realization Problem , 1983 .
[11] P. Tukia. Differentiability and rigidity of Möbius groups , 1985 .
[12] A. Douady,et al. Conformally natural extension of homeomorphisms of the circle , 1986 .
[13] S. Agard. Mostow rigidity on the line: A survey , 1988 .
[14] G. Folland. Harmonic analysis in phase space , 1989 .
[15] G. Folland. Harmonic Analysis in Phase Space. (AM-122), Volume 122 , 1989 .
[16] P. Tukia. MOSTOW-RIGIDITY AND NON-COMPACT HYPERBOLIC MANIFOLDS , 1991 .
[17] M. Gromov,et al. Rigidity of lattices: An introduction , 1991 .
[18] R. Benedetti,et al. Lectures on Hyperbolic Geometry , 1992 .
[19] R. Penner. Universal Constructions in Teichmüller Theory , 1993 .