Quantum key distribution system against the probabilistic faint after-gate attack

[1]  Wei Chen,et al.  Security of BB84 with weak randomness and imperfect qubit encoding , 2018, Quantum Information Processing.

[2]  Shuang Wang,et al.  Hacking the Quantum Key Distribution System by Exploiting the Avalanche-Transition Region of Single-Photon Detectors , 2018, Physical Review Applied.

[3]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[4]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[5]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[6]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[7]  J. Skaar,et al.  Laser damage helps the eavesdropper in quantum cryptography. , 2013, Physical review letters.

[8]  J. Skaar,et al.  Thermal blinding of gated detectors in quantum cryptography. , 2010, Optics express.

[9]  Vadim Makarov,et al.  Controlling an actively-quenched single photon detector with bright light. , 2008, Optics express.

[10]  Vadim Makarov,et al.  Superlinear threshold detectors in quantum cryptography , 2011, 1106.2119.

[11]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[12]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[13]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[14]  Xiongfeng Ma,et al.  ar X iv : q ua ntp h / 05 12 08 0 v 2 1 1 A pr 2 00 6 TIMESHIFT ATTACK IN PRACTICAL QUANTUM , 2005 .

[15]  J. F. Dynes,et al.  Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography , 2011, 1106.2675.

[16]  Xiongfeng Ma,et al.  Secure quantum key distribution with realistic devices , 2020 .

[17]  J. Skaar,et al.  Controlling a superconducting nanowire single-photon detector using tailored bright illumination , 2011, 1106.2396.

[18]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[19]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[20]  Vadim Makarov,et al.  Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography” [Appl. Phys. Lett. 98, 231104 (2011)] , 2011, 1106.3756.

[21]  H. Weinfurter,et al.  Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors , 2011, 1101.5289.

[22]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[23]  Mu-Sheng Jiang,et al.  Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems , 2013 .

[24]  J. Skaar,et al.  After-gate attack on a quantum cryptosystem , 2010, 1009.2683.

[25]  H. Inamori,et al.  Unconditional security of practical quantum key distribution , 2007 .

[26]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[27]  V. Makarov Controlling passively quenched single photon detectors by bright light , 2007, 0707.3987.

[28]  Shuang Wang,et al.  Randomness determines practical security of BB84 quantum key distribution , 2015, Scientific Reports.

[29]  Feihu Xu,et al.  Experimental demonstration of phase-remapping attack in a practical quantum key distribution system , 2010, 1005.2376.

[30]  Qin Wang,et al.  Weak randomness impacts the security of reference-frame-independent quantum key distribution. , 2019, Optics letters.

[31]  Q. Cai,et al.  Small imperfect randomness restricts security of quantum key distribution , 2018, Physical Review A.

[32]  Dong Liu,et al.  Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources , 2011, 1110.4574.

[33]  N. Lutkenhaus,et al.  Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack , 2001, quant-ph/0112147.