A tunable Doppler-free dichroic lock for laser frequency stabilization

We propose and demonstrate a laser frequency stabilization scheme which generates a dispersion-like tunable Doppler-free dichroic lock (TDFDL) signal. This signal offers a wide tuning range for lock point (i.e. zero-crossing) without compromising on the slope of the locking signal. The method involves measurement of magnetically induced dichroism in an atomic vapour for a weak probe laser beam in the presence of a counter-propagating strong pump laser beam. A simple model is presented to explain the basic principles of this method to generate the TDFDL signal. The spectral shift in the locking signal is achieved by tuning the frequency of the pump beam. The TDFDL signal is shown to be useful for locking the frequency of a cooling laser used for magneto-optical trap (MOT) for 87Rb atoms.

[1]  E. Riis,et al.  Phase-space properties of magneto-optical traps utilising micro-fabricated gratings. , 2015, Optics express.

[2]  Charles S. Adams,et al.  Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking , 2002 .

[3]  W. Gawlik,et al.  Laser frequency stabilization by magnetically assisted rotation spectroscopy , 2011 .

[4]  F. Sorrentino,et al.  Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell , 2001 .

[5]  V. B. Tiwari,et al.  Laser frequency stabilization using a balanced bi-polarimeter , 2006 .

[6]  H. Noh,et al.  Line shapes in sub-Doppler DAVLL in the 87Rb-D2 line , 2016 .

[7]  M. Pichler,et al.  Simple laser frequency locking based on Doppler-free magnetically induced dichroism , 2012 .

[8]  W. Gawlik,et al.  Laser frequency stabilization by Doppler-free magnetic dichroism , 2002 .

[9]  C. Wieman,et al.  A narrow‐band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb , 1992 .

[10]  Guglielmo M. Tino,et al.  Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking , 2003 .

[11]  T. W. Hänsch,et al.  New Measurement of the Rydberg Constant Using Polarization Spectroscopy of H α , 1978 .

[12]  H. Noh,et al.  Sub-Doppler DAVLL spectra of the D1 line of rubidium: a theoretical and experimental study , 2015 .

[13]  Liantuan Xiao,et al.  Application of sub-Doppler DAVLL to laser frequency stabilization in atomic cesium. , 2014, Applied optics.

[14]  V. B. Tiwari,et al.  Laser frequency stabilization using Doppler-free bi-polarization spectroscopy , 2006 .

[15]  S. Cornish,et al.  DAVLL lineshapes in atomic rubidium , 2007 .

[16]  S. Okubo,et al.  Modulation-free laser frequency stabilization to a saturated sub-Doppler spectral line in a transversal magnetic field , 2012 .

[17]  L. Mudarikwa,et al.  Sub-Doppler modulation spectroscopy of potassium for laser stabilization , 2011, 1112.4998.

[18]  S. Cornish,et al.  Optimization of sub-Doppler DAVLL on the rubidium D2 line , 2008 .

[19]  S. Chu Nobel Lecture: The manipulation of neutral particles , 1998 .

[20]  Theodor W. Hänsch,et al.  Doppler-Free Laser Polarization Spectroscopy , 1976 .

[21]  S. P. Ram,et al.  Laser frequency stabilization and large detuning by Doppler-free dichroic lock technique: Application to atom cooling , 2005 .

[22]  Carter F. Hand,et al.  Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor. , 1998, Applied optics.

[23]  Stephens,et al.  Experimental and theoretical study of the vapor-cell Zeeman optical trap. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[24]  Yu-zhu Wang,et al.  Optimization of Doppler-free magnetically induced dichroic locking spectroscopy on the 1S0–3P1 transition of a neutral mercury atom , 2013 .

[25]  J Goldwin,et al.  Polarization spectroscopy and magnetically-induced dichroism of the potassium D2 lines. , 2012, Optics express.