A fuzzy backpropagation algorithm

This paper presents an extension of the standard backpropagation algorithm (SBP). The proposed learning algorithm is based on the fuzzy integral of Sugeno and thus called fuzzy backpropagation (FBP) algorithm. Necessary and sufficient conditions for convergence of FBP algorithm for single-output networks in case of single- and multiple-training patterns are proved. A computer simulation illustrates and confirms the theoretical results. FBP algorithm shows considerably greater convergence rate compared to SBP algorithm. Other advantages of FBP algorithm are that it reaches forward to the target value without oscillations, requires no assumptions about probability distribution and independence of input data. The convergence conditions enable training by automation of weights tuning process (quasi-unsupervised learning) pointing out the interval where the target value belongs to. This supports acquisition of implicit knowledge and ensures wide application, e.g. for creation of adaptable user interfaces, assessment of products, intelligent data analysis, etc.

[1]  Shouhong Wang,et al.  A neural network technique in modeling multiple criteria multiple person decision making , 1994, Comput. Oper. Res..

[2]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[3]  S. Stoeva,et al.  A weight-learning algorithm for fuzzy production systems with weighting coefficients , 1992 .

[4]  Bob Wielinga,et al.  The CommonKADS Model set, Deliverable ESPRIT project P5248, KADS_II/WP I-II/RR/UvA/6.0 , 1994 .

[5]  Alexander NIKOV,et al.  ISSUE: AN INTELLIGENT SOFTWARE SYSTEM FOR USABILITY EVALUATION OF HYPERMEDIA USER INTERFACE , 1999 .

[6]  Harald Reiterer,et al.  Software evaluation using the 9241 evaluator , 1997, Behav. Inf. Technol..

[7]  A. Nikov,et al.  A neuro-fuzzy approach for adaptable user interface implemented in the information system of Bulgarian parliament , 1997 .

[8]  Alexander Nikov,et al.  A FUZZY KNOWLEDGE-BASED MECHANISM FOR COMPUTER-AIDED ERGONOMIC EVALUATION OF INDUSTRIAL PRODUCTS , 1991 .

[9]  Gernoth Grunst,et al.  Systems with assistance capabilities: adaptive and adaptable systems , 1996 .

[10]  Matthias Jäger,et al.  Wissensbasierte Systeme, ein brauchbares Werkzeug zur menschengerechten Arbeitsgestaltung? Erfahrungen mit dem Pilotprojekt „Ergon-Expert “ , 1991 .

[11]  Martin Brown,et al.  Neurofuzzy adaptive modelling and control , 1994 .

[12]  Kaddour Najim,et al.  Fuzzy neural networks and application to the FBC process , 1996 .

[13]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[14]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[15]  James M. Keller,et al.  Backpropagation neural networks for fuzzy logic , 1992, Inf. Sci..

[16]  Giacinto Matarazzo,et al.  A methodology for human factors analysis in office automation systems , 1993 .

[17]  Bob Wielinga,et al.  The Common KADS model set , 1993 .

[18]  Chin-Teng Lin,et al.  An ART-based fuzzy adaptive learning control network , 1997, IEEE Trans. Fuzzy Syst..