Gromov‐Hausdorff Stable Signatures for Shapes using Persistence

We introduce a family of signatures for finite metric spaces, possibly endowed with real valued functions, based on the persistence diagrams of suitable filtrations built on top of these spaces. We prove the stability of our signatures under Gromov‐Hausdorff perturbations of the spaces. We also extend these results to metric spaces equipped with measures. Our signatures are well‐suited for the study of unstructured point cloud data, which we illustrate through an application in shape classification.

[1]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[2]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[3]  A. Ben Hamza,et al.  Probabilistic shape descriptor for triangulated surfaces , 2005, IEEE International Conference on Image Processing 2005.

[4]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[5]  Alexander M. Bronstein,et al.  Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..

[6]  Patrizio Frosini,et al.  Using matching distance in size theory: A survey , 2006, Int. J. Imaging Syst. Technol..

[7]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[8]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[9]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[10]  Guillermo Sapiro,et al.  Comparing point clouds , 2004, SGP '04.

[11]  Andrea Cerri,et al.  Stability in multidimensional Size Theory , 2006, ArXiv.

[12]  Leonidas J. Guibas,et al.  Persistence barcodes for shapes , 2004, SGP '04.

[13]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[14]  D. Cohen-Steiner,et al.  Geometric Inference , 2007 .

[15]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[16]  Rainer E. Burkard,et al.  Linear Assignment Problems and Extensions , 1999, Handbook of Combinatorial Optimization.

[17]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[18]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[19]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[21]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[22]  R. Ho Algebraic Topology , 2022 .

[23]  Daniel Cremers,et al.  Integral Invariants for Shape Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Serge J. Belongie,et al.  Matching with shape contexts , 2000, 2000 Proceedings Workshop on Content-based Access of Image and Video Libraries.

[25]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[26]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[27]  Patrizio Frosini,et al.  Natural Pseudo-Distance and Optimal Matching between Reduced Size Functions , 2008, ArXiv.

[28]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[29]  Facundo Mémoli,et al.  Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .

[30]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[31]  P. Frosini,et al.  A distance for similarity classes of submanifolds of a Euclidean space , 1990, Bulletin of the Australian Mathematical Society.

[32]  Bernard Chazelle,et al.  Matching 3D models with shape distributions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[33]  Alexander M. Bronstein,et al.  Topology-Invariant Similarity of Nonrigid Shapes , 2009, International Journal of Computer Vision.

[34]  Abubakr Muhammad,et al.  Coverage and hole-detection in sensor networks via homology , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[35]  A. Ben Hamza,et al.  Geodesic Object Representation and Recognition , 2003, DGCI.

[36]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[37]  Jean-Daniel Boissonnat,et al.  Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing , 2004 .

[38]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[39]  Facundo Mémoli,et al.  Gromov-Hausdorff distances in Euclidean spaces , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[40]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.