Tensor coupling and relativistic spin and pseudospin symmetries of the Pöschl–Teller-like potential

[1]  Guo-Hua Sun,et al.  Quantum information entropies of the eigenstates for the Pöschl—Teller-like potential , 2013 .

[2]  M. Hamzavi,et al.  Exactly Complete Solutions of the Dirac Equation with Pseudoharmonic Potential Including Linear Plus Coulomb-Like Tensor Potential , 2011 .

[3]  Gao-Feng Wei,et al.  Pseudospin symmetry for modified Rosen-Morse potential including a Pekeris-type approximation to the pseudo-centrifugal term , 2010 .

[4]  M. Hamzavi,et al.  Exact pseudospin symmetry solution of the Dirac equation for spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction via asymptotic iteration method , 2010 .

[5]  Yao Jiang-Ming,et al.  Polarization effect on the spin symmetry for anti-Lambda spectrum in (16)O+.LAMBDA. system , 2010 .

[6]  Gao-Feng Wei,et al.  Pseudospin symmetry in the relativistic Manning-Rosen potential including a Pekeris-type approximation to the pseudo-centrifugal term , 2010 .

[7]  Gao-Feng Wei,et al.  Spin symmetry in the relativistic symmetrical well potential including a proper approximation to the spin–orbit coupling term , 2010 .

[8]  R. Sever,et al.  Exact Pseudospin Symmetric Solution of the Dirac Equation for Pseudoharmonic Potential in the Presence of Tensor Potential , 2010 .

[9]  S. Dong,et al.  A novel algebraic approach to spin symmetry for Dirac equation with scalar and vector second Pöschl-Teller potentials , 2010 .

[10]  Ramazan Sever,et al.  Approximate bound state solutions of Dirac equation with Hulthén potential including Coulomb-like tensor potential , 2010, Appl. Math. Comput..

[11]  Guo-Hua Sun,et al.  THE SOLUTION OF THE SECOND PÖSCHL–TELLER LIKE POTENTIAL BY NIKIFOROV–UVAROV METHOD , 2010 .

[12]  宋春艳,et al.  Polarization effect on the spin symmetry for anti-Lambda spectrum in ^16O+∧ system , 2010 .

[13]  M. Jie,et al.  Spin Symmetry for Anti-Lambda Spectrum in Atomic Nucleus , 2009 .

[14]  J. Meng,et al.  Spin Symmetry for Anti-Lambda Spectrum in atomic nucleus , 2009, 0910.4065.

[15]  Gao-Feng Wei,et al.  Algebraic approach to pseudospin symmetry for the Dirac equation with scalar and vector modified Pöschl-Teller potentials , 2009 .

[16]  Gao-Feng Wei,et al.  The spin symmetry for deformed generalized Pöschl–Teller potential , 2009 .

[17]  Tao Chen,et al.  Approximate analytical solutions of the Dirac equation with the generalized Pöschl–Teller potential including the pseudo-centrifugal term , 2009 .

[18]  H. Akçay Dirac equation with scalar and vector quadratic potentials and Coulomb-like tensor potential , 2009 .

[19]  R. Sever,et al.  Pseudospin and spin symmetry in the Dirac equation with Woods-Saxon potential and tensor potential , 2009 .

[20]  Gao-Feng Wei,et al.  Approximately analytical solutions of the Manning–Rosen potential with the spin–orbit coupling term and spin symmetry , 2008 .

[21]  S. Dong,et al.  Analytical approximations to the l-wave solutions of the Klein–Gordon equation for a second Pöschl–Teller like potential , 2008 .

[22]  Su He,et al.  Approximate analytical solutions of the Dirac equation with the Pöschl–Teller potential including the spin–orbit coupling term , 2008 .

[23]  S. Dong,et al.  Energy spectra of the hyperbolic and second Pöschl Teller like potentials solved by new exact quantization rule , 2008 .

[24]  S. Dong,et al.  ANALYTICAL APPROXIMATIONS TO THE SCHRÖDINGER EQUATION FOR A SECOND PÖSCHL–TELLER-LIKE POTENTIAL WITH CENTRIFUGAL TERM , 2008 .

[25]  Liehui Zhang,et al.  Analytical approximation to the solution of the Dirac equation with the Eckart potential including the spin–orbit coupling term , 2008 .

[26]  Ismail Boztosun,et al.  κ state solutions of the Dirac equation for the Eckart potential with pseudospin and spin symmetry , 2008 .

[27]  S. Dong,et al.  Analytical approximations to the l-wave solutions of the Schrödinger equation with an exponential-type potential , 2007 .

[28]  Guo-Hua Sun,et al.  Analytical approximations to the l-wave solutions of the Schrödinger equation with the Eckart potential , 2007 .

[29]  S. Dong,et al.  Analytical approximations to the solutions of the Manning-Rosen potential with centrifugal term , 2007 .

[30]  H. Akçay The Dirac oscillator with a Coulomb-like tensor potential , 2007 .

[31]  W. Scheid,et al.  Test of spin symmetry in anti-nucleon spectra , 2006 .

[32]  C. Berkdemir,et al.  Pseudospin symmetry in the relativistic Morse potential including the spin–orbit coupling term , 2006 .

[33]  A. D. Alhaidari,et al.  Dirac and Klein Gordon equations with equal scalar and vector potentials , 2005, hep-th/0503208.

[34]  J. Ginocchio U(3) and pseudo-U(3) symmetry of the relativistic harmonic oscillator. , 2005, Physical review letters.

[35]  Chun-Sheng Jia,et al.  Bound states of the Dirac equation with vector and scalar Scarf-type potentials , 2005 .

[36]  P. Alberto,et al.  Tensor coupling and pseudospin symmetry in nuclei , 2004, nucl-th/0411120.

[37]  Chun-Sheng Jia,et al.  Bound states of the Klein¿Gordon equation with vector and scalar five-parameter exponential-type potentials , 2004 .

[38]  M. Fiolhais,et al.  Pseudospin symmetry and the relativistic harmonic oscillator , 2003, nucl-th/0310071.

[39]  Chun-Sheng Jia,et al.  Bound states of the five-parameter exponential-type potential model☆ , 2003 .

[40]  P. Ring,et al.  Spin symmetry in the antinucleon spectrum. , 2003, Physical review letters.

[41]  G. Mao Effect of tensor couplings in a relativistic Hartree approach for finite nuclei , 2002, nucl-th/0211034.

[42]  Chun-Sheng Jia,et al.  PT symmetry and shape invariance for a potential well with a barrier , 2002 .

[43]  J. Ginocchio A relativistic symmetry in nuclei , 1998, nucl-th/9812035.

[44]  J.Meng,et al.  The pseudo-spin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line , 1998, nucl-th/9808026.

[45]  P. Ring,et al.  Pseudospin symmetry in relativistic mean field theory , 1998 .

[46]  X. Yao,et al.  A unified recurrence operator method for obtaining normalized explicit wavefunctions for shape-invariant potentials , 1998 .

[47]  J. Ginocchio,et al.  On the relativistic foundations of pseudospin symmetry in nuclei , 1997, nucl-th/9710019.

[48]  J. Ginocchio Pseudospin as a relativistic symmetry , 1996, nucl-th/9611044.

[49]  J. Draayer,et al.  Generalized pseudo-SU(3) model and pairing , 1995 .

[50]  A. Khare,et al.  Supersymmetry and quantum mechanics , 1994, hep-th/9405029.

[51]  D. Gitman,et al.  Exact solutions of relativistic wave equations , 1990 .

[52]  M. Moshinsky,et al.  The Dirac oscillator , 1989 .

[53]  A. Khare,et al.  Explicit wavefunctions for shape-invariant potentials by operator techniques , 1988 .

[54]  Leander,et al.  Abundance and systematics of nuclear superdeformed states; relation to the pseudospin and pseudo-SU(3) symmetries. , 1987, Physical review letters.

[55]  L. Gendenshtein Derivation of Exact Spectra of the Schrodinger Equation by Means of Supersymmetry , 1984 .

[56]  A. Bohr,et al.  Pseudospin in Rotating Nuclear Potentials , 1982 .

[57]  R. Greene,et al.  Variational wave functions for a screened Coulomb potential , 1976 .

[58]  K. Shimizu,et al.  Pseudo LS coupling and pseudo SU3 coupling schemes , 1969 .

[59]  K. T. Hecht,et al.  GENERALIZED SENIORITY FOR FAVORED J # 0 PAIRS IN MIXED CONFIGURATIONS , 1969 .