Pseudomonas aeruginosa intensive care unit outbreak: winnowing of transmissions with molecular and genomic typing

[1]  A. Bashir,et al.  Pseudomonas aeruginosa , 2020, Reference Module in Biomedical Sciences.

[2]  A. Mellmann,et al.  Real-Time Genome Sequencing of Resistant Bacteria Provides Precision Infection Control in an Institutional Setting , 2016, Journal of Clinical Microbiology.

[3]  S. Jensen,et al.  Whole Genome Sequencing in Real-Time Investigation and Management of a Pseudomonas aeruginosa Outbreak on a Neonatal Intensive Care Unit , 2015, Infection Control & Hospital Epidemiology.

[4]  J. Parkhill,et al.  Evolutionary dynamics of methicillin-resistant Staphylococcus aureus within a healthcare system , 2015, Genome Biology.

[5]  Jacqueline A. Keane,et al.  Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins , 2014, Nucleic acids research.

[6]  N. Loman,et al.  Seeking the source of Pseudomonas aeruginosa infections in a recently opened hospital: an observational study using whole-genome sequencing , 2014, BMJ Open.

[7]  Matthew J. Thompson,et al.  Current and future use of point-of-care tests in primary care: an international survey in Australia, Belgium, The Netherlands, the UK and the USA , 2014, BMJ Open.

[8]  Ronald N. Jones,et al.  Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009-11 in 14 European and Mediterranean countries. , 2014, The Journal of antimicrobial chemotherapy.

[9]  M. Kelsey Pseudomonas in augmented care: should we worry? , 2013, The Journal of antimicrobial chemotherapy.

[10]  Lori A. S. Snyder,et al.  Epidemiological investigation of Pseudomonas aeruginosa isolates from a six-year-long hospital outbreak using high-throughput whole genome sequencing. , 2013, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[11]  N. Loman,et al.  Clusters of genetically similar isolates of Pseudomonas aeruginosa from multiple hospitals in the UK. , 2013, Journal of medical microbiology.

[12]  J. Parkhill,et al.  Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study , 2013, The Lancet. Infectious diseases.

[13]  T. Walker,et al.  Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study , 2013, The Lancet. Infectious diseases.

[14]  G. Smith,et al.  A pilot study of rapid whole-genome sequencing for the investigation of a Legionella outbreak , 2013, BMJ Open.

[15]  Julian Parkhill,et al.  Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. , 2012, The New England journal of medicine.

[16]  D. Harmsen,et al.  Ion Torrent Personal Genome Machine Sequencing for Genomic Typing of Neisseria meningitidis for Rapid Determination of Multiple Layers of Typing Information , 2012, Journal of Clinical Microbiology.

[17]  Alain Filloux,et al.  The Pseudomonas aeruginosa Reference Strain PA14 Displays Increased Virulence Due to a Mutation in ladS , 2011, PloS one.

[18]  J. Rothberg,et al.  Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology , 2011, PloS one.

[19]  O. Durojaiye,et al.  Outbreak of multidrug-resistant Pseudomonas aeruginosa in an intensive care unit. , 2011, The Journal of hospital infection.

[20]  James H. Bullard,et al.  The origin of the Haitian cholera outbreak strain. , 2011, The New England journal of medicine.

[21]  M. Kaufmann,et al.  Evaluation of a nine-locus variable-number tandem-repeat scheme for typing of Pseudomonas aeruginosa. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[22]  S. Bentley,et al.  Evolution of MRSA During Hospital Transmission and Intercontinental Spread , 2010, Science.

[23]  K. Kerr,et al.  Pseudomonas aeruginosa: a formidable and ever-present adversary. , 2009, The Journal of hospital infection.

[24]  M. Gardam,et al.  Outbreak of Multidrug-Resistant Pseudomonas aeruginosa Colonization and Infection Secondary to Imperfect Intensive Care Unit Room Design , 2009, Infection Control & Hospital Epidemiology.

[25]  L. Saiman,et al.  Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[26]  N. Floret,et al.  The role of water fittings in intensive care rooms as reservoirs for the colonization of patients with Pseudomonas aeruginosa , 2008, Intensive Care Medicine.

[27]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[28]  Matthew Berriman,et al.  ACT: the Artemis comparison tool , 2005, Bioinform..

[29]  E. Anaissie,et al.  The hospital water supply as a source of nosocomial infections: a plea for action. , 2002, Archives of internal medicine.

[30]  H. Giamarellou Prescribing guidelines for severe Pseudomonas infections. , 2002, The Journal of antimicrobial chemotherapy.

[31]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[32]  P. Hoffman,et al.  Investigation of healthcare-acquired infections associated with Pseudomonas aeruginosa biofilms in taps in neonatal units in Northern Ireland. , 2014, The Journal of hospital infection.

[33]  B. Souweine,et al.  Pseudomonas aeruginosa and Pseudomonas putida outbreak associated with contaminated water outlets in an oncohaematology paediatric unit. , 2007, The Journal of hospital infection.

[34]  M. Pallen,et al.  Outbreaks: Defi Nition and Classifi Cation Genomics and Outbreak Investigation: from Sequence to Consequence , 2022 .