Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study

[1]  Karl K. Turekian,et al.  Treatise on geochemistry , 2014 .

[2]  Y. Dilek,et al.  Lhasa terrane in southern Tibet came from Australia , 2011 .

[3]  Dunyi Liu,et al.  India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks , 2011 .

[4]  L. Duan,et al.  Tracing the position of the South China block in Gondwana: U–Pb ages and Hf isotopes of Devonian detrital zircons , 2011 .

[5]  Z. Hou,et al.  The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth , 2010 .

[6]  L. Yongsheng,et al.  Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS , 2010 .

[7]  D. Wyman,et al.  Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia , 2010 .

[8]  P. Castiñeiras,et al.  REE-assisted U–Pb zircon age (SHRIMP) of an anatectic granodiorite: Constraints on the evolution of the A Silva granodiorite, Iberian allochthonous complexes , 2010 .

[9]  Shan Gao,et al.  Continental and Oceanic Crust Recycling-induced Melt^Peridotite Interactions in the Trans-North China Orogen: U^Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths , 2010 .

[10]  Fu-Yuan Wu,et al.  Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet , 2009 .

[11]  W. Griffin,et al.  Apatite Composition: Tracing Petrogenetic Processes in Transhimalayan Granitoids , 2009 .

[12]  Yue-heng Yang,et al.  Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes , 2009 .

[13]  E. Belousova,et al.  Detrital zircon ages: Improving interpretation via Nd and Hf isotopic data , 2009 .

[14]  M. Stiller,et al.  The origin of brines underlying Lake Kinneret , 2009 .

[15]  Fu-Yuan Wu,et al.  Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography , 2009 .

[16]  Peter A. Cawood,et al.  A Matter of Preservation , 2009, Science.

[17]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[18]  Dunyi Liu,et al.  Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications , 2008 .

[19]  W. Griffin,et al.  Where was South China in the Rodinia supercontinent?. Evidence from U-Pb geochronology and Hf isotopes of detrital zircons , 2008 .

[20]  D. Rubatto,et al.  Trace element chemistry and U–Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps) , 2008 .

[21]  Yuan Si-hua Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdise belt, Tibet, China, with a discussion of geodynamic setting-related issues , 2008 .

[22]  Q. Crowley,et al.  A-type granite and adakitic magmatism association in Songpan Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination , 2007 .

[23]  P. Kelemen,et al.  Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance , 2007 .

[24]  C. M. Gray,et al.  Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon , 2007, Science.

[25]  Yuan Hong-lin Indosinian Orogenesis of the Gangdise Terrane: Evidences from Zircon U-Pb Dating and Petrogenesis of Granitoids , 2007 .

[26]  Dunyi Liu,et al.  Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet , 2006 .

[27]  T. Harrison,et al.  Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet , 2005 .

[28]  Q. Zhang,et al.  Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism , 2005 .

[29]  W. Griffin,et al.  U–Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton , 2005 .

[30]  N. Harris,et al.  U-Pb ages of Kude and Sajia leucogranites in Sajia dome from North Himalaya and their geological implications , 2004 .

[31]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[32]  W. Griffin,et al.  Igneous zircon: trace element composition as an indicator of source rock type , 2002 .

[33]  P. Hoppe,et al.  REE, U, Th, and Hf distribution in zircon from Western Carpathian Variscan granitoids: A combined cathodoluminescence and ion microprobe study , 2001 .

[34]  B. Chappell,et al.  Two contrasting granite types: 25 years later , 2001 .

[35]  B. Chappell,et al.  Identifying Accessory Mineral Saturation during Differentiation in Granitoid Magmas: an Integrated Approach , 2000 .

[36]  D. Clark,et al.  Geochronological constraints for a two-stage history of the Albany–Fraser Orogen, Western Australia , 2000 .

[37]  T. Ireland,et al.  Rare earth element chemistry of zircon and its use as a provenance indicator , 2000 .

[38]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[39]  Carlos Segovia Fernández,et al.  Understanding granites: integrating new and classical techniques , 2000, Geological Society, London, Special Publications.

[40]  B. Barbarin A review of the relationships between granitoid types, their origins and their geodynamic environments , 1999 .

[41]  A. P. Douce,et al.  What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas , 1999 .

[42]  P. Sylvester Post-collisional strongly peraluminous granites , 1998 .

[43]  J. Liégeois,et al.  Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization , 1998 .

[44]  W. Griffin,et al.  Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons , 1998, Mineralogical Magazine.

[45]  P. Hoskin Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS : A consideration and comparison of two broadly competitive techniques , 1998 .

[46]  K. H. Wedepohl,et al.  The Composition of the Continental Crust , 1995 .

[47]  H. Rollinson Using Geochemical Data: Evaluation, Presentation, Interpretation , 1993 .

[48]  L. Taylor,et al.  Rare earth element selenochemistry of immiscible liquids and zircon at Apollo 14 - An ion probe study of evolved rocks on the moon , 1993 .

[49]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[50]  L. Heaman,et al.  The chemical composition of igneous zircon suites: implications for geochemical tracer studies , 1990 .

[51]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[52]  W. E. Stephens,et al.  Origin of infracrustal (I-type) granite magmas , 1988, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[53]  C. Coulon,et al.  Mesozoic and cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance , 1986 .

[54]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[55]  B. Chappell,et al.  Two contrasting granite types , 1974 .

[56]  J. Jastrow The Mine of Man: A Text-book of Psychology , 1902 .