On Hilbert bases of polyhedral cones
暂无分享,去创建一个
[1] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[2] Rekha R. Thomas. A Geometric Buchberger Algorithm for Integer Programming , 1995, Math. Oper. Res..
[3] F. Thorne,et al. Geometry of Numbers , 2017, Algebraic Number Theory.
[4] G. Ziegler. Lectures on Polytopes , 1994 .
[5] Jack E. Graver,et al. On the foundations of linear and integer linear programming I , 1975, Math. Program..
[6] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[7] L. Lovász,et al. A POLYNOMIAL-TIME TEST FOR TOTAL DUAL INTEGRALITY IN FIXED DIMENSION , 1984 .
[8] Uwe Wessels,et al. On the ampleness of invertible sheaves in complete projective toric varieties , 1991 .
[9] Jiyong Liu,et al. Hilbert bases with the Carathéodory property , 1991 .
[10] Robert Weismantel,et al. Hilbert Bases and the Facets of Special Knapsack Polytopes , 1996, Math. Oper. Res..
[11] Günter M. Ziegler,et al. On the Height of the Minimal Hilbert Basis , 1993 .
[12] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[13] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[14] H. Minkowski,et al. Geometrie der Zahlen , 1896 .
[15] D. Hilbert. Über die Theorie der algebraischen Formen , 1890 .