Total Representations

Almost all representations considered in computable analysis are partial. We provide arguments in favor of total representations (by elements of the Baire space). Total representations make the well known analogy between numberings and representations closer, unify some terminology, simplify some technical details, suggest interesting open questions and new invariants of topological spaces relevant to computable analysis.

[1]  K. Weihrauch The Degrees of Discontinuity of some Translators Between Representations of the Real Numbers , 1992 .

[2]  Christoph Kreitz,et al.  Representations of the real numbers and of the open subsets of the set of real numbers , 1987, Ann. Pure Appl. Log..

[3]  Victor L. Selivanov Classifying omega-regular partitions , 2007, LATA.

[4]  J. Ersov Theorie der Numerierungen II , 1973 .

[5]  Andrej Bauer,et al.  The realizability approach to computable analysis and topology , 2000 .

[6]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[7]  Victor L. Selivanov,et al.  Definability in the h-quasiorder of labeled forests , 2009, Ann. Pure Appl. Log..

[8]  Vasco Brattka Effective Borel measurability and reducibility of functions , 2005, Math. Log. Q..

[9]  Alessandro Andretta More on Wadge determinacy , 2006, Ann. Pure Appl. Log..

[10]  Victor L. Selivanov Hierarchies of [ ... ] º 2-measurable k -partitions , 2007 .

[11]  Matthias Schröder,et al.  Admissible representations for continuous computations , 2003 .

[12]  V. L. Selivanov Index sets in the hyperarithmetical hierarchy , 1984 .

[13]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[14]  Peter Hertling,et al.  Topological properties of real number representations , 2002, Theor. Comput. Sci..

[15]  Victor L. Selivanov,et al.  On the Difference Hierarchy in Countably Based T0-Spaces , 2008, CCA.

[16]  Dieter Spreen,et al.  Representations versus numberings: on the relationship of two computability notions , 2001, Theor. Comput. Sci..

[17]  Yu. L. Ershov Rogers Semilattices of Finite Partially Ordered Sets , 2006 .

[18]  Klaus W. Wagner,et al.  The boolean hierarchy of NP-partitions , 2008, Inf. Comput..

[19]  Matthew de Brecht Quasi-Polish spaces , 2011, Ann. Pure Appl. Log..

[20]  Victor L. Selivanov,et al.  Towards a descriptive set theory for domain-like structures , 2006, Theor. Comput. Sci..

[21]  J. U. L. Ersov,et al.  Theorie der Numerierungen II , 1975, Math. Log. Q..

[22]  Kenneth W. Regan,et al.  Computability , 2022, Algorithms and Theory of Computation Handbook.

[23]  Victor L. Selivanov,et al.  Undecidability in Weihrauch Degrees , 2010, CiE.

[24]  Vasco Brattka,et al.  Effective Choice and Boundedness Principles in Computable Analysis , 2009, The Bulletin of Symbolic Logic.

[25]  Philipp Schlicht,et al.  Wadge-like reducibilities on arbitrary quasi-Polish spaces , 2012, Mathematical Structures in Computer Science.

[26]  Yuri L. Ershov,et al.  Theory of Numberings , 1999, Handbook of Computability Theory.

[27]  Vladimir Kanovei,et al.  Borel equivalence relations : structure and classification , 2008 .

[28]  R. Schindler Descriptive Set Theory , 2014 .

[29]  Sven Kosub NP-Partitions over Posets with an Application to Reducing the Set of Solutions of NP Problems , 2004, Theory of Computing Systems.

[30]  V. L. Selivanov,et al.  Difference Hierarchy in ϕ-Spaces , 2004 .

[31]  William W. Wadge,et al.  Reducibility and Determinateness on the Baire Space , 1982 .

[32]  Victor L. Selivanov,et al.  Definability in the Homomorphic Quasiorder of Finite Labeled Forests , 2007, CiE.

[33]  V. Selivanov Boolean Hierarchies of Partitions over a Reducible Base , 2004 .

[34]  Christoph Kreitz,et al.  Theory of Representations , 1985, Theor. Comput. Sci..

[35]  Victor L. Selivanov,et al.  A Gandy Theorem for Abstract Structures and Applications to First-Order Definability , 2009, CiE.

[36]  Douglas Miller,et al.  A Topological Analog to the Rice-Shapiro Index Theorem , 1982, J. Symb. Log..

[37]  Matthias Schröder,et al.  Extended admissibility , 2002, Theor. Comput. Sci..

[38]  Peter Hertling,et al.  Unstetigkeitsgrade von Funktionen in der effektiven Analysis , 1996 .

[39]  Vasco Brattka,et al.  Weihrauch degrees, omniscience principles and weak computability , 2009, J. Symb. Log..

[40]  Matthias Schröder,et al.  Spaces allowing Type‐2 Complexity Theory revisited , 2004, Math. Log. Q..

[41]  Victor L. Selivanov A Fine Hierarchy of ω-Regular k-Partitions , 2011, CiE.

[42]  Arnold W. Miller,et al.  Rigid Borel sets and better quasi-order theory , 1985 .