Total Representations
暂无分享,去创建一个
[1] K. Weihrauch. The Degrees of Discontinuity of some Translators Between Representations of the Real Numbers , 1992 .
[2] Christoph Kreitz,et al. Representations of the real numbers and of the open subsets of the set of real numbers , 1987, Ann. Pure Appl. Log..
[3] Victor L. Selivanov. Classifying omega-regular partitions , 2007, LATA.
[4] J. Ersov. Theorie der Numerierungen II , 1973 .
[5] Andrej Bauer,et al. The realizability approach to computable analysis and topology , 2000 .
[6] Dana S. Scott,et al. Data Types as Lattices , 1976, SIAM J. Comput..
[7] Victor L. Selivanov,et al. Definability in the h-quasiorder of labeled forests , 2009, Ann. Pure Appl. Log..
[8] Vasco Brattka. Effective Borel measurability and reducibility of functions , 2005, Math. Log. Q..
[9] Alessandro Andretta. More on Wadge determinacy , 2006, Ann. Pure Appl. Log..
[10] Victor L. Selivanov. Hierarchies of [ ... ] º 2-measurable k -partitions , 2007 .
[11] Matthias Schröder,et al. Admissible representations for continuous computations , 2003 .
[12] V. L. Selivanov. Index sets in the hyperarithmetical hierarchy , 1984 .
[13] Klaus Weihrauch,et al. Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.
[14] Peter Hertling,et al. Topological properties of real number representations , 2002, Theor. Comput. Sci..
[15] Victor L. Selivanov,et al. On the Difference Hierarchy in Countably Based T0-Spaces , 2008, CCA.
[16] Dieter Spreen,et al. Representations versus numberings: on the relationship of two computability notions , 2001, Theor. Comput. Sci..
[17] Yu. L. Ershov. Rogers Semilattices of Finite Partially Ordered Sets , 2006 .
[18] Klaus W. Wagner,et al. The boolean hierarchy of NP-partitions , 2008, Inf. Comput..
[19] Matthew de Brecht. Quasi-Polish spaces , 2011, Ann. Pure Appl. Log..
[20] Victor L. Selivanov,et al. Towards a descriptive set theory for domain-like structures , 2006, Theor. Comput. Sci..
[21] J. U. L. Ersov,et al. Theorie der Numerierungen II , 1975, Math. Log. Q..
[22] Kenneth W. Regan,et al. Computability , 2022, Algorithms and Theory of Computation Handbook.
[23] Victor L. Selivanov,et al. Undecidability in Weihrauch Degrees , 2010, CiE.
[24] Vasco Brattka,et al. Effective Choice and Boundedness Principles in Computable Analysis , 2009, The Bulletin of Symbolic Logic.
[25] Philipp Schlicht,et al. Wadge-like reducibilities on arbitrary quasi-Polish spaces , 2012, Mathematical Structures in Computer Science.
[26] Yuri L. Ershov,et al. Theory of Numberings , 1999, Handbook of Computability Theory.
[27] Vladimir Kanovei,et al. Borel equivalence relations : structure and classification , 2008 .
[28] R. Schindler. Descriptive Set Theory , 2014 .
[29] Sven Kosub. NP-Partitions over Posets with an Application to Reducing the Set of Solutions of NP Problems , 2004, Theory of Computing Systems.
[30] V. L. Selivanov,et al. Difference Hierarchy in ϕ-Spaces , 2004 .
[31] William W. Wadge,et al. Reducibility and Determinateness on the Baire Space , 1982 .
[32] Victor L. Selivanov,et al. Definability in the Homomorphic Quasiorder of Finite Labeled Forests , 2007, CiE.
[33] V. Selivanov. Boolean Hierarchies of Partitions over a Reducible Base , 2004 .
[34] Christoph Kreitz,et al. Theory of Representations , 1985, Theor. Comput. Sci..
[35] Victor L. Selivanov,et al. A Gandy Theorem for Abstract Structures and Applications to First-Order Definability , 2009, CiE.
[36] Douglas Miller,et al. A Topological Analog to the Rice-Shapiro Index Theorem , 1982, J. Symb. Log..
[37] Matthias Schröder,et al. Extended admissibility , 2002, Theor. Comput. Sci..
[38] Peter Hertling,et al. Unstetigkeitsgrade von Funktionen in der effektiven Analysis , 1996 .
[39] Vasco Brattka,et al. Weihrauch degrees, omniscience principles and weak computability , 2009, J. Symb. Log..
[40] Matthias Schröder,et al. Spaces allowing Type‐2 Complexity Theory revisited , 2004, Math. Log. Q..
[41] Victor L. Selivanov. A Fine Hierarchy of ω-Regular k-Partitions , 2011, CiE.
[42] Arnold W. Miller,et al. Rigid Borel sets and better quasi-order theory , 1985 .