Vertex arboricity of planar graphs without chordal 6-cycles

The vertex arboricity va(G) of a graph G is the minimum number of colours the vertices can be coloured so that each colour class induces a forest. It was known that va(G)≤3 for every planar graph G, and the problem of computing vertex arboricity of graphs is NP-hard. In this paper, we prove that va(G)≤2 if G is a planar graph without chordal 6-cycles. This extends a result by Raspaud and Wang [On the vertex-arboricity of planar graphs, Eur. J. Combin. 29 (2008), pp. 1064–1075].

[1]  Wei-Fan Wang,et al.  On the vertex-arboricity of planar graphs without 7-cycles , 2012, Discret. Math..

[2]  Ko-Wei Lih,et al.  Choosability and edge choosability of planar graphs without five cycles , 2002, Appl. Math. Lett..

[3]  Susmita Sur-Kolay,et al.  Efficient Algorithms for Vertex Arboricity of Planar Graphs , 1995, FSTTCS.

[4]  Zhi-Zhong Chen,et al.  Efficient Algorithms for Acyclic Colorings of Graphs , 1999, Theor. Comput. Sci..

[5]  Stefan A. Burr An inequality involving the vertex arboricity and edge arboricity of a graph , 1986, J. Graph Theory.

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  G. Chartrand,et al.  The Point‐Arboricity of Planar Graphs , 1969 .

[8]  Min Chen,et al.  Vertex-arboricity of planar graphs without intersecting triangles , 2012, Eur. J. Comb..

[9]  Alexandr V. Kostochka,et al.  Variable degeneracy: extensions of Brooks' and Gallai's theorems , 2000, Discret. Math..

[10]  Oleg V. Borodin,et al.  Planar graphs without 4-cycles adjacent to 3-cycles are list vertex 2-arborable , 2009, J. Graph Theory.

[11]  Hong-Jian Lai,et al.  Vertex arboricity and maximum degree , 1995, Discret. Math..

[12]  Xin He,et al.  Parallel Complexity of Partitioning a Planar Graph Into Vertex-induced Forests , 1996, Discret. Appl. Math..

[13]  Gary Chartrand,et al.  The point-arboricity of a graph , 1968 .

[14]  Bojan Mohar,et al.  Planar Graphs Without Cycles of Specific Lengths , 2002, Eur. J. Comb..

[15]  Gerard J. Chang,et al.  Vertex and Tree Arboricities of Graphs , 2004, J. Comb. Optim..

[16]  S. L. Hakimi,et al.  A Note on the Vertex Arboricity of a Graph , 1989, SIAM J. Discret. Math..

[17]  Sherman K. Stein,et al.  $B$-sets and planar maps. , 1971 .

[18]  André Raspaud,et al.  On the vertex-arboricity of planar graphs , 2008, Eur. J. Comb..

[19]  Zhi-Zhong Chen NC Algorithms for Partitioning Sparse Graphs into Induced Forests with an Application , 1995, ISAAC.

[20]  John Mitchem,et al.  Critical Point‐Arboritic Graphs , 1975 .