Bilateral symmetric organization of neural elements in the visual system of a coelenterate, Tripedalia cystophora (Cubozoa)

Cubozoans differ from other cnidarians by their body architecture and nervous system structure. In the medusa stage they possess the most advanced visual system within the phylum, located in sophisticated sensory structures, rhopalia. The rhopalium is a club‐shaped structure with paired pit‐shaped pigment cup eyes, paired slit‐shaped pigment cup eyes, and two complex camera‐type eyes: one small upper lens eye and one large lower lens eye. The medusa carries four rhopalia and visual processing and locomotor rhythm generation takes place in the rhopalia. We show here a bilaterally symmetric organization of neurons, with commissures connecting the two sides, in the rhopalium of the cubozoan Tripedalia cystophora. The fortuitous observation that a subset of neurons is strongly immunoreactive for a PCNA (proliferating cell nuclear antigen)‐like epitope allowed us to analyze the organization of these neurons in detail. Distinct PCNA‐immunoreactive (PCNA‐ir) nuclei form six bilateral pairs that are associated with the slit eyes, pit eyes, upper lens eye, and the posterior wall of the rhopalium. Three commissures connect the clusters of the two sides and all clusters in the rhopalium have connections to the area around the base of the stalk. This neuronal system provides an anatomical substrate for integration of visual signals from the different eyes. J. Comp. Neurol. 492:251–262, 2005. © 2005 Wiley‐Liss, Inc.

[1]  Edward W. Berger,et al.  The histological structure of the eyes of Cubomedusæ , 1898 .

[2]  C. L. Singla,et al.  Fine structure of the ocellus of Sarsia tubulosa (Hydrozoa, Anthomedusae) , 1982, Zoomorphology.

[3]  P. Anderson Cnidarian neurobiology: what does the future hold? , 2004, Hydrobiologia.

[4]  M. Coates,et al.  Visual Ecology and Functional Morphology of Cubozoa (Cnidaria)1 , 2003, Integrative and comparative biology.

[5]  A. Collins Phylogeny of Medusozoa and the evolution of cnidarian life cycles , 2002 .

[6]  G. Mackie Central Neural Circuitry in the Jellyfish Aglantha , 2004, Neurosignals.

[7]  R. Larson Cubomedusae: Feeding — Functional Morphology, Behavior and Phylogenetic Position , 1976 .

[8]  M. Anctil,et al.  Neuronal and nonneuronal taurine-like immunoreactivity in the sea pansy, Renilla koellikeri (Cnidaria, Anthozoa) , 1997, Cell and Tissue Research.

[9]  Andrew N. Spencer,et al.  DOPAMINE AS A NEUROACTIVE SUBSTANCE IN THE JELLYFISH POLYORCHIS PENICILLATUS , 1991 .

[10]  J. Finnerty,et al.  Origins of Bilateral Symmetry: Hox and Dpp Expression in a Sea Anemone , 2004, Science.

[11]  W. Hamner,et al.  A physical context for gelatinous zooplankton aggregations: a review , 2001, Hydrobiologia.

[12]  M. Hündgen,et al.  Die Ultrastruktur des neuromuskulären Systems der Medusen von Tripedalia cystophora und Carybdea marsupialis (Coelenterata, Cubozoa) , 1984, Zoomorphology.

[13]  W. Gallin,et al.  The anatomy of the nervous system of the hydrozoan jellyfish, Polyorchis penicillatus, as revealed by a monoclonal antibody , 2001, Invertebrate Neuroscience.

[14]  Edward J. Buskey,et al.  Behavioral adaptations of the cubozoan medusa Tripedalia cystophora for feeding on copepod (Dioithona oculata) swarms , 2003 .

[15]  Masao Yoshida,et al.  Fine structure of complex ocelli of a cubomedusan, Tamoya bursaria Haeckel , 1976, Cell and Tissue Research.

[16]  M. Noda,et al.  Effect of comparative lightness of obstacles on swimming behavior of Carybdea rastoni (Cnidaria: Cubozoa) , 2000 .

[17]  Masao Yoshida,et al.  ELECTRON MICROSCOPY ON THE PHOTORECEPTORS OF AN ANTHOMEDUSA AND A SCYPHOMEDUSA , 1973 .

[18]  C. L. Singla,et al.  Fine structure studies of the ocelli of Polyorchis penicillatus (Hydrozoa, Anthomedusae) and their connection with the nerve ring , 1982, Zoomorphology.

[19]  P. Hamner,et al.  Swimming, feeding, circulation and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria: Cubozoa) , 1995 .

[20]  J. Finnerty,et al.  The Radiata and the evolutionary origins of the bilaterian body plan. , 2002, Molecular phylogenetics and evolution.

[21]  C. Tortiglione,et al.  Putative NMDA receptors in Hydra: a biochemical and functional study , 2004, The European journal of neuroscience.

[22]  J. Bouillon,et al.  ETUDE DE QUELQUES ORGANES SENSORIELS DE CNIDAIRES , 1974 .

[23]  J. A. Westfall,et al.  The nervous systems of cnidarians. , 1995, EXS.

[24]  Marc-Antoine Gillis,et al.  Tyrosine hydroxylase and dopamine-β-hydroxylase immunoreactivities in the cnidarian Renilla koellikeri , 2002, Cell and Tissue Research.

[25]  M. O’Donnell,et al.  The ring-type polymerase sliding clamp family , 2001, Genome Biology.

[26]  G. Biggio,et al.  Putative glycine receptors in Hydra: a biochemical and behavioural study , 2001, The European journal of neuroscience.

[27]  W. H. The Cubomedusae , 2022, Nature.

[28]  L. Descarries,et al.  Serotonin‐immunoreactive neurons in the cnidarian Renilla koellikeri , 1990, The Journal of comparative neurology.

[29]  R. Doolittle,et al.  Determining Divergence Times of the Major Kingdoms of Living Organisms with a Protein Clock , 1996, Science.

[30]  M. Williamson,et al.  Neuropeptides in cnidarians : Biology of neglected groups: Cnidaria , 2002 .

[31]  Z. Kozmík,et al.  Cubozoan jellyfish: an Evo/Devo model for eyes and other sensory systems. , 2004, The International journal of developmental biology.

[32]  T. Paunesku,et al.  Proliferating cell nuclear antigen (PCNA): ringmaster of the genome , 2001, International journal of radiation biology.

[33]  A. Collins,et al.  REDUCTIO AD ABSURDUM: TESTING THE EVOLUTIONARY RELATIONSHIPS OF EDIACARAN AND PALEOZOIC PROBLEMATIC FOSSILS USING MOLECULAR DIVERGENCE DATES , 2004, Journal of Paleontology.

[34]  Lars Gislén,et al.  Advanced optics in a jellyfish eye , 2005, Nature.

[35]  Y. Toh,et al.  Fine structure of the ocellus of the hydromedusan, Spirocodon saltatrix. I. Receptor cells. , 1979, Journal of Ultrastructure Research.

[36]  C. Weber Structure, histochemistry, ontogenetic development, and regeneration of the ocellus of Cladonema radiatum dujardin (cnidaria, hydrozoa, anthomedusae) , 1981, Journal of morphology.

[37]  N. Mechawar,et al.  Melatonin in a primitive metazoan: Seasonal changes of levels and immunohistochemical visualization in neurons , 1997, The Journal of comparative neurology.

[38]  G. Biggio,et al.  Biochemical and functional identification of GABA receptors in Hydra vulgaris. , 1995, Life sciences.

[39]  Mark A McPeek,et al.  Estimating metazoan divergence times with a molecular clock. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. R. Elliott,et al.  Immunocytochemical evidence for biogenic amines and immunogold labeling of serotonergic synapses in tentacles of Aiptasia pallida (Cnidaria, Anthozoa) , 2005 .

[41]  R. Satterlie Central control of swimming in the cubomedusan jellyfishCarybdea rastonii , 1979, Journal of comparative physiology.

[42]  R. Satterlie Neuronal control of swimming in jellyfish: a comparative story , 2002 .

[43]  C. L. Singla Ocelli of hydromedusae , 1974, Cell and Tissue Research.

[44]  M. Williamson,et al.  Neuropeptides in Cnidarians , 2002 .

[45]  V. Martin,et al.  Photoreceptors of cnidarians , 2002 .

[46]  F. S. Conant,et al.  Physiology and Histology of the Cubomedusae, Including Dr. F.S. Conant's Notes on the Physiology , 2013 .

[47]  M. Anctil,et al.  Biogenic amines in coelenterates. , 1993, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[48]  Scott E. Stewart,et al.  Field behavior of tripedalia cystophora (class cubozoa) , 1996 .

[49]  G. Matsumoto Observations on the anatomy and behavior of the cubozoan Carybdea rastonni Haacke , 1995 .