Large-scale quantum machine learning

Quantum computers promise to enhance machine learning for practical applications. Quantum machine learning for real-world data has to handle extensive amounts of high-dimensional data. However, conventional methods for measuring quantum kernels are impractical for large datasets as they scale with the square of the dataset size. Here, we measure quantum kernels using randomized measurements to gain a quadratic speedup in computation time and quickly process large datasets. Further, we efficiently encode high-dimensional data into quantum computers with the number of features scaling linearly with the circuit depth. The encoding is characterized by the quantum Fisher information metric and is related to the radial basis function kernel. We demonstrate the advantages of our methods by classifying images with the IBM quantum computer. To achieve further speedups we distribute the quantum computational tasks between different quantum computers. Our approach is exceptionally robust to noise via a complementary error mitigation scheme. Using currently available quantum computers, the MNIST database can be processed within 220 hours instead of 10 years which opens up industrial applications of quantum machine learning.

[1]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[2]  Francesco Petruccione,et al.  Quantum classifier with tailored quantum kernel , 2019 .

[3]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[4]  Jos'e I. Latorre,et al.  Data re-uploading for a universal quantum classifier , 2019, Quantum.

[5]  Thomas Hubregtsen,et al.  Training Quantum Embedding Kernels on Near-Term Quantum Computers , 2021, ArXiv.

[6]  Maria Schuld,et al.  Effect of data encoding on the expressive power of variational quantum-machine-learning models , 2020, Physical Review A.

[7]  Xiaodi Wu,et al.  Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning , 2017, ICALP.

[8]  Peter Zoller,et al.  Cross-Platform Verification of Intermediate Scale Quantum Devices. , 2020, Physical review letters.

[9]  Kishor Bharti,et al.  Capacity and quantum geometry of parametrized quantum circuits , 2021, PRX Quantum.

[10]  Maria Schuld,et al.  Quantum machine learning models are kernel methods , 2021, 2101.11020.

[11]  P. Barkoutsos,et al.  Learning to measure: adaptive informationally complete POVMs for near-term quantum algorithms , 2021 .

[12]  John Preskill,et al.  Provably efficient machine learning for quantum many-body problems , 2021, ArXiv.

[13]  L. Deng,et al.  The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web] , 2012, IEEE Signal Processing Magazine.

[14]  Maria Schuld,et al.  Supervised Learning with Quantum Computers , 2018 .

[15]  Xiao Yuan,et al.  Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation , 2020, Journal of the Physical Society of Japan.

[16]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[17]  Peter Zoller,et al.  Statistical correlations between locally randomized measurements: A toolbox for probing entanglement in many-body quantum states , 2018, Physical Review A.

[18]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[19]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[20]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[21]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[22]  Tobias Haug,et al.  Optimal training of variational quantum algorithms without barren plateaus , 2021, ArXiv.

[23]  H. Neven,et al.  Machine learning of high dimensional data on a noisy quantum processor , 2021, npj Quantum Information.

[24]  Sukin Sim,et al.  Noisy intermediate-scale quantum (NISQ) algorithms , 2021, Reviews of Modern Physics.

[25]  Jin-Guo Liu,et al.  Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design , 2019, Quantum.

[26]  Iordanis Kerenidis,et al.  Nearest centroid classification on a trapped ion quantum computer , 2020, npj Quantum Information.

[27]  Masoud Mohseni,et al.  Power of data in quantum machine learning , 2020, Nature Communications.

[28]  Arthur Pesah,et al.  Quantum machine learning in high energy physics , 2020, Mach. Learn. Sci. Technol..

[29]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[30]  J. Latorre,et al.  Realization of an ion trap quantum classifier , 2021 .

[31]  Stefano Pirandola,et al.  Generalization in Quantum Machine Learning: a Quantum Information Perspective , 2021, PRX Quantum.

[32]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[33]  Cross-Platform Comparison of Arbitrary Quantum Computations , 2021, 2107.11387.

[34]  Seth Lloyd,et al.  Quantum embeddings for machine learning , 2020 .

[35]  Efficient Mitigation of Depolarizing Errors in Quantum Simulations , 2021, 2101.01690.

[36]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[37]  Johannes Jakob Meyer,et al.  Fisher Information in Noisy Intermediate-Scale Quantum Applications , 2021, Quantum.

[38]  M. Kim,et al.  Natural parameterized quantum circuit , 2021, 2107.14063.

[39]  Srinivasan Arunachalam,et al.  A rigorous and robust quantum speed-up in supervised machine learning , 2020, ArXiv.

[40]  Vlatko Vedral,et al.  NISQ Algorithm for Semidefinite Programming , 2021, ArXiv.

[41]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[42]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[43]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[44]  Franco Nori,et al.  Experimental kernel-based quantum machine learning in finite feature space , 2019, Scientific Reports.

[45]  Stefan Woerner,et al.  The power of quantum neural networks , 2020, Nature Computational Science.

[46]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[47]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[48]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.