Palindromes and Sturmian Words

Abstract An infinite word x over the alphabet A is Sturmian if and only if g x ( n ) = n + 1 for any integer n , where g x ( n ) is the number of distinct words of length n occurring in x . A palindrome is a word that can be read indistinctly from left to right or from right to left. We prove that x is Sturmian if and only if h x ( n ) = 1 + ( n mod 2) for any integer n , where h x ( n ) is the number of palindromes of length n occurring in x . An infinite word x over the alphabet A is generated by a morphism f if there exists a letter c ϵ A such that lim n →∞ f n ( c ) = x . We prove the existence of a morphism that generates the palindromes of any infinite Sturmian word generated by a morphism.

[1]  Giuseppe Pirillo,et al.  On a Combinatorial Property of Sturmian Words , 1996, Theor. Comput. Sci..

[2]  G. Rauzy,et al.  Mots infinis en arithmétique , 1984, Automata on Infinite Words.

[3]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[4]  Jean Berstel,et al.  A Remark on Morphic Sturmian Words , 1994, RAIRO Theor. Informatics Appl..

[5]  Tom C. Brown,et al.  Descriptions of the Characteristic Sequence of an Irrational , 1993, Canadian Mathematical Bulletin.

[6]  Aldo de Luca,et al.  Sturmian Words, Lyndon Words and Trees , 1997, Theor. Comput. Sci..

[7]  Aldo de Luca,et al.  A Combinatorial Property of the Fibonacci Words , 1981, Inf. Process. Lett..

[8]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[9]  Giuseppe Pirillo,et al.  Fibonacci numbers and words , 1997, Discret. Math..

[10]  R. Baer,et al.  The Significance of the System of Subgroups for the Structure of the Group , 1939 .

[11]  Patrice Séébold,et al.  Fibonacci Morphisms and Sturmian Words , 1991, Theor. Comput. Sci..

[12]  Aldo de Luca,et al.  Standard Sturmian Morphisms , 1997, Theor. Comput. Sci..

[13]  Underwood Dudley Elementary Number Theory , 1978 .

[14]  Aldo de Luca,et al.  Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..

[15]  P. Shiue,et al.  Substitution invariant cutting sequences , 1993 .

[16]  Aldo de Luca,et al.  On Standard Sturmian Morphisms , 1996, ICALP.

[17]  Filippo Mignosi,et al.  Infinite Words with Linear Subword Complexity , 1989, Theor. Comput. Sci..

[18]  Jean-Paul Allouche,et al.  Sur la complexite des suites in nies , 1994 .

[19]  Filippo Mignosi,et al.  Some Combinatorial Properties of Sturmian Words , 1994, Theor. Comput. Sci..

[20]  Filippo Mignosi,et al.  Morphismes sturmiens et règles de Rauzy , 1993 .

[21]  Patrice Séébold,et al.  On the Conjugation of Standard Morphisms , 1996, Theor. Comput. Sci..

[22]  Jean Berstel,et al.  A Characterization of Sturmian Morphisms , 1993, MFCS.

[23]  A. Markoff Sur une question de Jean Bernoulli , 1881 .

[24]  G. A. Hedlund,et al.  Sturmian Minimal Sets , 1944 .

[25]  S. Dulucq,et al.  On the factors of the Sturmian sequences , 1990 .

[26]  Xavier Droubay,et al.  Palindromes in the Fibonacci Word , 1995, Inf. Process. Lett..

[27]  Karel Culik,et al.  Iterative Devices Generating Infinite Words , 1992, STACS.

[28]  Zhi-Xiong Wen,et al.  LOCAL ISOMORPHISMS OF INVERTIBLE SUBSTITUTIONS , 1994 .