Lightweight and Secure PUF Key Storage Using Limits of Machine Learning

A lightweight and secure key storage scheme using silicon Physical Unclonable Functions (PUFs) is described. To derive stable PUF bits from chip manufacturing variations, a lightweight error correction code (ECC) encoder / decoder is used. With a register count of 69, this codec core does not use any traditional error correction techniques and is 75% smaller than a previous provably secure implementation, and yet achieves robust environmental performance in 65nm FPGA and 0.13µ ASIC implementations. The security of the syndrome bits uses a new security argument that relies on what cannot be learned from a machine learning perspective. The number of Leaked Bits is determined for each Syndrome Word, reducible using Syndrome Distribution Shaping. The design is secure from a min-entropy standpoint against a machinelearning-equipped adversary that, given a ceiling of leaked bits, has a classification error bounded by e. Numerical examples are given using latest machine learning results.

[1]  S. Devadas,et al.  Design and Implementation of PUF-Based "Unclonable" RFID ICs for Anti-Counterfeiting and Security Applications , 2008, 2008 IEEE International Conference on RFID.

[2]  Rafail Ostrovsky,et al.  Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data , 2004, SIAM J. Comput..

[3]  Ying Su,et al.  A 1.6pJ/bit 96% Stable Chip-ID Generating Circuit using Process Variations , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[4]  G. Edward Suh,et al.  Physical Unclonable Functions for Device Authentication and Secret Key Generation , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[5]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[6]  G. Edward Suh,et al.  Aegis: A Single-Chip Secure Processor , 2007, IEEE Design & Test of Computers.

[7]  Elisabeth Oswald,et al.  Cryptographic Hardware and Embedded Systems - CHES 2008, 10th International Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings , 2008, CHES.

[8]  Frank Sehnke,et al.  On the Foundations of Physical Unclonable Functions , 2009, IACR Cryptol. ePrint Arch..

[9]  Ingrid Verbauwhede,et al.  A soft decision helper data algorithm for SRAM PUFs , 2009, 2009 IEEE International Symposium on Information Theory.

[10]  Ingrid Verbauwhede,et al.  Cryptographic Hardware and Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007, Proceedings , 2007, CHES.

[11]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[12]  Frank Sehnke,et al.  Policy Gradients for Cryptanalysis , 2010, ICANN.

[13]  Srinivas Devadas,et al.  Silicon physical random functions , 2002, CCS '02.

[14]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[15]  Sergei Skorobogatov,et al.  Semi-invasive attacks: a new approach to hardware security analysis , 2005 .

[16]  Hugo Krawczyk,et al.  LFSR-based Hashing and Authentication , 1994, CRYPTO.

[17]  Ahmad-Reza Sadeghi,et al.  Efficient Helper Data Key Extractor on FPGAs , 2008, CHES.

[18]  Jorge Guajardo,et al.  FPGA Intrinsic PUFs and Their Use for IP Protection , 2007, CHES.

[19]  Srinivas Devadas,et al.  Modeling attacks on physical unclonable functions , 2010, CCS '10.

[20]  Lazaros S. Iliadis,et al.  Artificial Neural Networks - ICANN 2010 - 20th International Conference, Thessaloniki, Greece, September 15-18, 2010, Proceedings, Part I , 2010, International Conference on Artificial Neural Networks.

[21]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[22]  Hartmut Pohl,et al.  RFID security , 2004, Inf. Secur. Tech. Rep..

[23]  G. Edward Suh,et al.  Extracting secret keys from integrated circuits , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[24]  Siva Sai Yerubandi,et al.  Differential Power Analysis , 2002 .

[25]  Thomas M. Cover,et al.  Elements of Information Theory: Cover/Elements of Information Theory, Second Edition , 2005 .

[26]  Daniel E. Holcomb,et al.  Initial SRAM State as a Fingerprint and Source of True Random Numbers for RFID Tags , 2007 .

[27]  Srinivas Devadas,et al.  Secure and robust error correction for physical unclonable functions , 2010, IEEE Design & Test of Computers.

[28]  Blaise L. P. Gassend,et al.  Physical random functions , 2003 .

[29]  Yvo Desmedt,et al.  Advances in Cryptology — CRYPTO ’94 , 2001, Lecture Notes in Computer Science.

[30]  Daniel E. Holcomb,et al.  Power-Up SRAM State as an Identifying Fingerprint and Source of True Random Numbers , 2009, IEEE Transactions on Computers.