Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics

[1]  Mei-Rong Ke,et al.  Aggregation-Enhanced Sonodynamic Activity of Phthalocyanine-Artesunate Conjugates. , 2021, Angewandte Chemie.

[2]  Kanyi Pu,et al.  Molecular Probes for Autofluorescence-Free Optical Imaging. , 2021, Chemical reviews.

[3]  Zhenhua Hu,et al.  A phosphorescent probe for in vivo imaging in the second near-infrared window , 2021, Nature Biomedical Engineering.

[4]  D. Zhao,et al.  X-ray-activated persistent luminescence nanomaterials for NIR-II imaging , 2021, Nature Nanotechnology.

[5]  J. Dionne,et al.  Ultra-High-Frequency-Radio-Frequency-Acoustic Molecular Imaging with Saline Nanodroplets in Living Subjects , 2021, Nature Nanotechnology.

[6]  Kanyi Pu,et al.  Molecular Chemiluminescent Probes with a Very Long Near‐Infrared Emission Wavelength for in Vivo Imaging , 2020, Angewandte Chemie.

[7]  M. Ashokkumar,et al.  Sonochemical dosimetry: A comparative study of Weissler, Fricke and terephthalic acid methods , 2020, Ultrasonics sonochemistry.

[8]  Wei Tao,et al.  Ultrasound mediated therapy: Recent progress and challenges in nanoscience , 2020, Nano Today.

[9]  Kai Yang,et al.  A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy , 2020, Nature Nanotechnology.

[10]  Kanyi Pu,et al.  Molecular Chemiluminescent Probes with a Record Long Near-infrared Turn-on Wavelength for In vivo Imaging. , 2020, Angewandte Chemie.

[11]  Chun‐Xia Zhao,et al.  NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing , 2020, Nature Communications.

[12]  Kanyi Pu,et al.  Near‐Infrared Chemiluminescent Reporters for In Vivo Imaging of Reactive Oxygen and Nitrogen Species in Kidneys , 2020, Advanced Functional Materials.

[13]  Hongyuan Chen,et al.  H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo , 2020, Nature Communications.

[14]  Lief E. Fenno,et al.  Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics , 2019, Proceedings of the National Academy of Sciences.

[15]  Fabian Kiessling,et al.  Smart cancer nanomedicine , 2019, Nature Nanotechnology.

[16]  L. Coussens,et al.  The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer , 2019, Nature Communications.

[17]  Kanyi Pu,et al.  An Organic Afterglow Protheranostic Nanoassembly , 2019, Advanced materials.

[18]  Peng Chen,et al.  A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging , 2019, Nature Communications.

[19]  Quanyin Hu,et al.  In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment , 2018, Nature Nanotechnology.

[20]  Kai Yang,et al.  Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses , 2018, Nature Biomedical Engineering.

[21]  Jouke Dijkstra,et al.  A practical guide for the use of indocyanine green and methylene blue in fluorescence‐guided abdominal surgery , 2018, Journal of surgical oncology.

[22]  L. Caskey,et al.  Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response , 2018, The Journal of clinical investigation.

[23]  Michael F. Cuccarese,et al.  TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. , 2018, Nature biomedical engineering.

[24]  G. Canavese,et al.  Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer , 2018, Chemical engineering journal.

[25]  Kanyi Pu,et al.  Self‐Assembled Semiconducting Polymer Nanoparticles for Ultrasensitive Near‐Infrared Afterglow Imaging of Metastatic Tumors , 2018, Advanced materials.

[26]  Jesse V Jokerst,et al.  Molecular afterglow imaging with bright, biodegradable polymer nanoparticles , 2017, Nature Biotechnology.

[27]  H. Ploegh,et al.  Noninvasive Imaging of Human Immune Responses in a Human Xenograft Model of Graft-Versus-Host Disease , 2017, The Journal of Nuclear Medicine.

[28]  Jan Grimm,et al.  Utilizing the power of Cerenkov light with nanotechnology. , 2017, Nature nanotechnology.

[29]  Zhen Gu,et al.  In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy , 2017, Nature Biomedical Engineering.

[30]  Hongjie Dai,et al.  Near-infrared fluorophores for biomedical imaging , 2017, Nature Biomedical Engineering.

[31]  O. Abbas,et al.  Imiquimod in dermatology: an overview , 2016, International journal of dermatology.

[32]  A. Ribas,et al.  Combination cancer immunotherapies tailored to the tumour microenvironment , 2016, Nature Reviews Clinical Oncology.

[33]  David E. Fisher,et al.  Precision medicine for cancer with next-generation functional diagnostics , 2015, Nature Reviews Cancer.

[34]  Eugenia G. Giannopoulou,et al.  Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation , 2015, Nature Immunology.

[35]  W. Fan,et al.  Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence , 2015, Journal of the American Chemical Society.

[36]  Jan Grimm,et al.  Cerenkov luminescence imaging , 2015, Imaging Modalities for Biological and Preclinical Research: A Compendium, Volume 2.

[37]  Didier Gourier,et al.  The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. , 2014, Nature materials.

[38]  Kui Li,et al.  Toll-Like Receptors in Antiviral Innate Immunity , 2013, Journal of Molecular Biology.

[39]  Thomas A. Wynn,et al.  Macrophage biology in development, homeostasis and disease , 2013, Nature.

[40]  C. Sautès-Fridman,et al.  The immune contexture in human tumours: impact on clinical outcome , 2012, Nature Reviews Cancer.

[41]  Zhen Cheng,et al.  Harnessing the Power of Radionuclides for Optical Imaging: Cerenkov Luminescence Imaging , 2011, The Journal of Nuclear Medicine.

[42]  Cord Sunderkötter,et al.  An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. , 2011, The Journal of clinical investigation.

[43]  M. Karin,et al.  Immunity, Inflammation, and Cancer , 2010, Cell.

[44]  Csaba Szabó,et al.  Peroxynitrite: biochemistry, pathophysiology and development of therapeutics , 2007, Nature Reviews Drug Discovery.

[45]  Didier Gourier,et al.  Nanoprobes with near-infrared persistent luminescence for in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[46]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[47]  Jean Claude Chaumeil,et al.  A Review of Poloxamer 407 Pharmaceutical and Pharmacological Characteristics , 2006, Pharmaceutical Research.

[48]  C. Klebanoff,et al.  CD8+ T‐cell memory in tumor immunology and immunotherapy , 2006, Immunological reviews.

[49]  Sanjiv S Gambhir,et al.  Self-illuminating quantum dot conjugates for in vivo imaging , 2006, Nature Biotechnology.

[50]  Kenneth S. Suslick,et al.  Plasma formation and temperature measurement during single-bubble cavitation , 2005, Nature.

[51]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[52]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[53]  I. Ostrovskii,et al.  Sonoluminescence and acoustically driven optical phenomena in solids and solid–gas interfaces , 1999 .

[54]  R. S. Handley,et al.  Chemical and enzymatic triggering of 1,2-dioxetanes. 2: fluoride-induced chemiluminescence from tert-butyldimethylsilyloxy-substituted dioxetanes , 1987 .