Hierarchical spatio-temporal models for environmental processes

The processes governing environmental systems are often complex, involving different interacting scales of variability in space and time. The complexities and often high dimensionality of such spatio-temporal processes can be effectively addressed using a hierarchical modeling framework where a complex problem is decomposed into a series of simpler problems that are linked through rules of probability. In this dissertation, hierarchical spatio-temporal models are developed and utilized for environmental processes. The methods discussed in this dissertation include a wide scope of problems related to the modeling of spatio-temporal environmental processes. Specifically, methods are described for efficient modeling of spatio-temporal environmental processes using both discreteand continuousvalued data.

[1]  P. B. Liebelt An Introduction To Optimal Estimation , 1967 .

[2]  Ciprian M. Crainiceanu,et al.  Bayesian Analysis for Penalized Spline Regression Using WinBUGS , 2005 .

[3]  A van der Linde,et al.  Spatial-temporal analysis of mortality using splines. , 1995, Biometrics.

[4]  D. Lynch Numerical Partial Differential Equations for Environmental Scientists and Engineers: A First Practical Course , 2004 .

[5]  R. Zabel Using “Travel Time” Data to Characterize the Behavior of Migrating Animals , 2002, The American Naturalist.

[6]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[7]  Robert Nowak,et al.  Multiscale Hidden Markov Models for Bayesian Image Analysis , 1999 .

[8]  E. DeWeaver,et al.  Linearity in ENSO's Atmospheric Response , 2002 .

[9]  Jonathan R. Stroud,et al.  Dynamic models for spatiotemporal data , 2001 .

[10]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[11]  Atte Moilanen,et al.  Implications of empirical data quality to metapopulation model parameter estimation and application , 2002 .

[12]  Gardar Johannesson,et al.  Dynamic multi-resolution spatial models , 2007, Environmental and Ecological Statistics.

[13]  James J. Anderson,et al.  A Model of the Travel Time of Migrating Juvenile Salmon, with an Application to Snake River Spring Chinook Salmon , 1997 .

[14]  Christopher K. Wikle,et al.  Hierarchical Bayesian Models for Predicting The Spread of Ecological Processes , 2003 .

[15]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[16]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[17]  A. Seed A Dynamic and Spatial Scaling Approach to Advection Forecasting , 2001 .

[18]  David R. Basco,et al.  Computational fluid dynamics - an introduction for engineers , 1989 .

[19]  Christopher K. Wikle,et al.  Climatological analysis of tornado report counts using a hierarchical Bayesian spatiotemporal model , 2003 .

[20]  S. Chib,et al.  Markov Chain Monte Carlo Analysis of Correlated Count Data , 2001 .

[21]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[22]  L. Mark Berliner,et al.  Hierarchical Bayesian Approach to Boundary Value Problems with Stochastic Boundary Conditions , 2003 .

[23]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[24]  M. Dixon,et al.  TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A Radar-based Methodology , 1993 .

[25]  S. Kocherlakota,et al.  Bivariate discrete distributions , 1992 .

[26]  J. T. Campbell,et al.  The Poisson Correlation Function , 1934 .

[27]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[28]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[29]  Daniel R. Lynch,et al.  Objective analysis for coastal regimes , 2001 .

[30]  C. Wunsch The Ocean Circulation Inverse Problem , 1996 .

[31]  C. Robert,et al.  Deviance information criteria for missing data models , 2006 .

[32]  R. White,et al.  Habitat Use and Movements of Pallid and Shovelnose Sturgeon in the Yellowstone and Missouri Rivers in Montana and North Dakota , 2001 .

[33]  David G. T. Denison,et al.  Bayesian MARS , 1998, Stat. Comput..

[34]  J. Aitchison,et al.  The multivariate Poisson-log normal distribution , 1989 .

[35]  J. Nichols,et al.  ESTIMATING SITE OCCUPANCY, COLONIZATION, AND LOCAL EXTINCTION WHEN A SPECIES IS DETECTED IMPERFECTLY , 2003 .

[36]  Hugh P Possingham,et al.  Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. , 2005, Ecology letters.

[37]  J. Tinsley Oden,et al.  Finite Elements, Computational Aspects, Vol. III. , 1985 .

[38]  R. Kohn,et al.  A Bayesian approach to nonparametric bivariate regression , 1997 .

[39]  J Andrew Royle,et al.  Site Occupancy Models with Heterogeneous Detection Probabilities , 2006, Biometrics.

[40]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[41]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[42]  Alan E. Gelfand,et al.  Model choice: A minimum posterior predictive loss approach , 1998, AISTATS.

[43]  D. Lindenmayer,et al.  Modelling the abundance of rare species: statistical models for counts with extra zeros , 1996 .

[44]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[45]  Peter Congdon Bayesian statistical modelling , 2002 .

[46]  M. Stein Space–Time Covariance Functions , 2005 .

[47]  L. Mark Berliner,et al.  Spatiotemporal Hierarchical Bayesian Modeling Tropical Ocean Surface Winds , 2001 .

[48]  B. Mallick,et al.  Generalized Nonlinear Modeling With Multivariate Free-Knot Regression Splines , 2003 .

[49]  Kui Wang,et al.  A zero-inflated Poisson mixed model to analyze diagnosis related groups with majority of same-day hospital stays , 2002, Comput. Methods Programs Biomed..

[50]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[51]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[52]  L. M. Berliner,et al.  Hierarchical Bayesian space-time models , 1998, Environmental and Ecological Statistics.

[53]  Peter Congdon,et al.  Bayesian Models for Categorical Data , 2005 .

[54]  P. Guttorp,et al.  A space-time analysis of ground-level ozone data , 1994 .

[55]  Adrian F. M. Smith,et al.  Hierarchical Bayesian Analysis of Changepoint Problems , 1992 .

[56]  Michael A. West,et al.  Multi-scale and hidden resolution time series models , 2006 .

[57]  Grace Wahba,et al.  Spatial-Temporal Analysis of Temperature Using Smoothing Spline ANOVA , 1998 .

[58]  David Ruppert,et al.  Variable Selection and Function Estimation in Additive Nonparametric Regression Using a Data-Based Prior: Comment , 1999 .

[59]  R. Wolfinger,et al.  Spatial Regression Models, Response Surfaces, and Process Optimization , 1997 .

[60]  H. Hartley Maximum Likelihood Estimation from Incomplete Data , 1958 .

[61]  J. Andrew Royle,et al.  Multiresolution models for nonstationary spatial covariance functions , 2002 .

[62]  H. Tong Non-linear time series. A dynamical system approach , 1990 .