Pooled tagging and hydrophobic targeting of endogenous proteins for unbiased mapping of unfolded protein responses

System-level understanding of proteome organization and function requires methods for direct visualization and manipulation of proteins at scale. We developed an approach enabled by high-throughput gene tagging for the generation and analysis of complex cell pools with endogenously tagged proteins. Proteins are tagged with HaloTag to enable visualization or direct perturbation. Fluorescent labeling followed by in situ sequencing and deep learning-based image analysis identifies the localization pattern of each tag, providing a bird’s-eye-view of cellular organization. Next, we use a hydrophobic HaloTag ligand to misfold tagged proteins, inducing spatially restricted proteotoxic stress that is read out by single cell RNA sequencing. By integrating optical and perturbation data, we map compartment-specific responses to protein misfolding, revealing inter-compartment organization and direct crosstalk, and assigning proteostasis functions to uncharacterized genes. Altogether, we present a powerful and efficient method for large-scale studies of proteome dynamics, function, and homeostasis.

[1]  C. Münch,et al.  A cytosolic surveillance mechanism activates the mitochondrial UPR , 2023, Nature.

[2]  Yehua Han,et al.  Recent advances in mass spectrometry imaging of single cells , 2023, Analytical and Bioanalytical Chemistry.

[3]  Beth K. Martin,et al.  Chromatin context-dependent regulation and epigenetic manipulation of prime editing , 2023, bioRxiv.

[4]  C. Deo,et al.  HaloTag‐Based Reporters for Fluorescence Imaging and Biosensing , 2023, Chembiochem : a European journal of chemical biology.

[5]  B. Asselbergh,et al.  Small heat shock proteins operate as molecular chaperones in the mitochondrial intermembrane space , 2023, Nature Cell Biology.

[6]  Caleb K. Chan,et al.  Mapping variation in the morphological landscape of human cells with optical pooled CRISPRi screening , 2022, bioRxiv.

[7]  Cathy H. Wu,et al.  UniProt: the Universal Protein Knowledgebase in 2023 , 2022, Nucleic acids research.

[8]  Evan Z. Macosko,et al.  The expanding vistas of spatial transcriptomics , 2022, Nature Biotechnology.

[9]  Christopher J. Obara,et al.  Structural Diversity within the Endoplasmic Reticulum-From the Microscale to the Nanoscale. , 2022, Cold Spring Harbor perspectives in biology.

[10]  J. Doudna,et al.  Decorating chromatin for enhanced genome editing using CRISPR-Cas9 , 2022, bioRxiv.

[11]  Fabian den Brave,et al.  Quality control of cytoplasmic proteins inside the nucleus , 2022, Computational and structural biotechnology journal.

[12]  Jonathan M. Mudge,et al.  A joint NCBI and EMBL-EBI transcript set for clinical genomics and research , 2022, Nature.

[13]  Marius Pachitariu,et al.  Cellpose 2.0: how to train your own model , 2022, bioRxiv.

[14]  Shalin B. Mehta,et al.  OpenCell: Endogenous tagging for the cartography of human cellular organization , 2022, Science.

[15]  Loic A. Royer,et al.  Self-supervised deep learning encodes high-resolution features of protein subcellular localization , 2022, Nature Methods.

[16]  Thomas M. Norman,et al.  High-content CRISPR screening , 2022, Nature Reviews Methods Primers.

[17]  P. Blainey,et al.  Pooled genetic perturbation screens with image-based phenotypes , 2022, Nature Protocols.

[18]  Thomas M. Norman,et al.  Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq , 2021, Cell.

[19]  J. Mateos,et al.  ER-misfolded proteins become sequestered with mitochondria and impair mitochondrial function , 2021, Communications Biology.

[20]  D. Hassabis,et al.  AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models , 2021, Nucleic Acids Res..

[21]  C. Crews,et al.  Modulation of Phosphoprotein Activity by Phosphorylation Targeting Chimeras (PhosTACs). , 2021, ACS chemical biology.

[22]  M. Tress,et al.  APPRIS: selecting functionally important isoforms , 2021, Nucleic Acids Res..

[23]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[24]  Isaac B. Hilton,et al.  Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase , 2021, Nature Communications.

[25]  S. Maity,et al.  ER Stress-Sensor Proteins and ER-Mitochondrial Crosstalk—Signaling Beyond (ER) Stress Response , 2021, Biomolecules.

[26]  T. Calì,et al.  Mitochondria Associated Membranes (MAMs): Architecture and physiopathological role. , 2021, Cell calcium.

[27]  S. Kubicek,et al.  Pooled protein tagging, cellular imaging, and in situ sequencing for monitoring drug action in real time , 2020, Genome research.

[28]  Tim Sainburg,et al.  Parametric UMAP Embeddings for Representation and Semisupervised Learning , 2020, Neural Computation.

[29]  Panagiotis Karakaidos,et al.  Resolving DNA Damage: Epigenetic Regulation of DNA Repair , 2020, Molecules.

[30]  C. Hetz,et al.  Mechanisms, regulation and functions of the unfolded protein response , 2020, Nature Reviews Molecular Cell Biology.

[31]  Ke Xu,et al.  Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway , 2020, Nature.

[32]  Philip A. Ewels,et al.  The nf-core framework for community-curated bioinformatics pipelines , 2020, Nature Biotechnology.

[33]  Marius Pachitariu,et al.  Cellpose: a generalist algorithm for cellular segmentation , 2020, Nature Methods.

[34]  C. Crews,et al.  Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery , 2020, Cell.

[35]  C. Kraft,et al.  An Early mtUPR: Redistribution of the Nuclear Transcription Factor Rox1 to Mitochondria Protects against Intramitochondrial Proteotoxic Aggregates , 2020, Molecular cell.

[36]  S. Ihn,et al.  Biomolecular condensates in neurodegeneration and cancer , 2019, Traffic.

[37]  Jonathan L. Schmid-Burgk,et al.  Optical Pooled Screens in Human Cells , 2019, Cell.

[38]  Anthony X. Ayala,et al.  Rational Design of Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging , 2019, ACS central science.

[39]  Yevgeniy V. Serebrenik,et al.  Protein folding state-dependent sorting at the Golgi apparatus , 2019, Molecular biology of the cell.

[40]  Yevgeniy V. Serebrenik,et al.  Efficient and flexible tagging of endogenous genes by homology-independent intron targeting , 2019, Genome research.

[41]  H. Zoghbi,et al.  Beta-binomial modeling of CRISPR pooled screen data identifies target genes with greater sensitivity and fewer false negatives , 2019, BCB.

[42]  Kendall R. Sanson,et al.  Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities , 2018, Nature Communications.

[43]  A. Bertolotti,et al.  Regulation of proteasome assembly and activity in health and disease , 2018, Nature Reviews Molecular Cell Biology.

[44]  Zev J. Gartner,et al.  DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors , 2018, bioRxiv.

[45]  Yevgeniy V. Serebrenik,et al.  Targeted protein unfolding uncovers a Golgi-specific transcriptional stress response , 2018, Molecular biology of the cell.

[46]  Ole Winther,et al.  NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning , 2018, bioRxiv.

[47]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[48]  Lingjun Li,et al.  Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. , 2018, Analytical chemistry.

[49]  John G Doench,et al.  Am I ready for CRISPR? A user's guide to genetic screens , 2017, Nature Reviews Genetics.

[50]  H. Kawamata,et al.  Proteinopathies and OXPHOS dysfunction in neurodegenerative diseases , 2017, The Journal of cell biology.

[51]  Cole M. Haynes,et al.  The mitochondrial UPR: mechanisms, physiological functions and implications in ageing , 2017, Nature Reviews Molecular Cell Biology.

[52]  Phillip G. Montgomery,et al.  Defining a Cancer Dependency Map , 2017, Cell.

[53]  Devin P. Sullivan,et al.  A subcellular map of the human proteome , 2017, Science.

[54]  Leland McInnes,et al.  hdbscan: Hierarchical density based clustering , 2017, J. Open Source Softw..

[55]  Eric Batchelor,et al.  Flexible CRISPR library construction using parallel oligonucleotide retrieval , 2017, Nucleic acids research.

[56]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[57]  Yuri Pritykin,et al.  GuideScan software for improved single and paired CRISPR guide RNA design , 2017, Nature Biotechnology.

[58]  Mila Ljujic,et al.  The integrated stress response , 2016, EMBO reports.

[59]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[60]  Bo Huang,et al.  A scalable strategy for high-throughput GFP tagging of endogenous human proteins , 2016, Proceedings of the National Academy of Sciences.

[61]  J. Harper,et al.  Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation , 2016, Nature.

[62]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[63]  I. E. Smith,et al.  HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. , 2015, ACS chemical biology.

[64]  Christopher G. England,et al.  HaloTag Technology: A Versatile Platform for Biomedical Applications , 2015, Bioconjugate chemistry.

[65]  Neville E. Sanjana,et al.  High-throughput functional genomics using CRISPR–Cas9 , 2015, Nature Reviews Genetics.

[66]  J. J. Macklin,et al.  A general method to improve fluorophores for live-cell and single-molecule microscopy , 2014, Nature Methods.

[67]  Yevgeniy V. Serebrenik,et al.  Targeted Protein Destabilization Reveals an Estrogen-mediated ER Stress Response , 2014, Nature chemical biology.

[68]  B. Glick,et al.  Golgi compartmentation and identity. , 2014, Current opinion in cell biology.

[69]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[70]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[71]  Teruo Hayashi,et al.  Sigma-1 Receptor Chaperone at the ER-Mitochondrion Interface Mediates the Mitochondrion-ER-Nucleus Signaling for Cellular Survival , 2013, PloS one.

[72]  G. Montelione,et al.  A bidirectional system for the dynamic small molecule control of intracellular fusion proteins. , 2013, ACS chemical biology.

[73]  Carolina Wählby,et al.  In situ sequencing for RNA analysis in preserved tissue and cells , 2013, Nature Methods.

[74]  R. Kaufman,et al.  ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death , 2013, Nature Cell Biology.

[75]  Timothy Daley,et al.  Predicting the molecular complexity of sequencing libraries , 2013, Nature Methods.

[76]  Joaquín Dopazo,et al.  Qualimap: evaluating next-generation sequencing alignment data , 2012, Bioinform..

[77]  Wei Li,et al.  RSeQC: quality control of RNA-seq experiments , 2012, Bioinform..

[78]  Thomas B. Sundberg,et al.  Identification of Hydrophobic Tags for the Degradation of Stabilized Proteins , 2012, Chembiochem : a European journal of chemical biology.

[79]  P. Walter,et al.  The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation , 2011, Science.

[80]  S. Spicuglia,et al.  H3K4 tri‐methylation provides an epigenetic signature of active enhancers , 2011, The EMBO journal.

[81]  J. Dye,et al.  Ebola virus entry requires the cholesterol transporter Niemann-Pick C1 , 2011, Nature.

[82]  T. Corson,et al.  Small-Molecule Hydrophobic Tagging Induced Degradation of HaloTag Fusion Proteins , 2011, Nature Chemical Biology.

[83]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[84]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[85]  Hedi Peterson,et al.  g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments , 2007, Nucleic Acids Res..

[86]  Erik K. Malm,et al.  A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics* , 2005, Molecular & Cellular Proteomics.

[87]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[88]  B. Cochran,et al.  Isolation and characterization of a near-haploid human cell line. , 1999, Experimental cell research.

[89]  M. Gaestel,et al.  Small heat shock proteins are molecular chaperones. , 1993, The Journal of biological chemistry.

[90]  R H Ebert,et al.  The medical school. , 1973, Scientific American.

[91]  Rong Li,et al.  Cytosolic proteostasis through importing of misfolded proteins into mitochondria , 2017, Nat..

[92]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[93]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[94]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..