Proton exchange for high‐index waveguides in LiNbO3

We describe the fabrication and characterization of optical waveguides formed in LiNbO3 by proton exchange in benzoic acid melts at 200–250 °C. Proton exchange, in LiNbO3 the replacement of lithium ions with protons, takes place when the substrate is immersed in the molten acid. We observe a surface increase in the refractive index of 0.12, for the extraordinary polarization only, with a step function index profile. This is the highest index increase obtainable to date for LiNbO3. Measured diffusion rates for x‐cut crystals are 1.37 μm2/h at T = 249 °C and 0.37 μm2/h at T = 217 °C, so that very deep guides can be formed in short times. Diffusion is somewhat slower in the z direction. The process as described is not useful for y‐cut crystals, since it damgaes this surface. Losses, measured on x‐cut samples, were <0.5 dB/cm. All measurements were made at 0.633 μm.