Methods for imaging thick specimens: confocal microscopy, deconvolution, and structured illumination.

When a thick specimen is viewed through a conventional microscope, one sees the sum of a sharp image of an in-focus region plus blurred images of all of the out-of-focus regions. High background, scattering, and aberrations are all problems when viewing thick specimens. Several methods are available to deal with these problems in living samples. These methods can be grouped into three classes: primarily optical (e.g., confocal microscopy, multiphoton microscopy), primarily computational (e.g., deconvolution techniques), and mixed (e.g., structured illumination) approaches. This article describes these techniques, which make it possible to see details within thick specimens (e.g., the interiors of cells within living tissue) by optical sectioning, without the artifacts associated with physically sectioning the specimen.

[1]  H. H. Hopkins The frequency response of a defocused optical system , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  Maurice Françon,et al.  Atlas of Optical Phenomena , 1963 .

[3]  M. D. Egger,et al.  New Reflected-Light Microscope for Viewing Unstained Brain and Ganglion Cells , 1967, Science.

[4]  Alan Boyde,et al.  The tandem scanning reflected light microscope , 1968 .

[5]  P. Stokseth Properties of a Defocused Optical System , 1969 .

[6]  C. S. Izzard,et al.  Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. , 1976, Journal of cell science.

[7]  G. J. Brakenhoff,et al.  Confocal scanning light microscopy with high aperture immersion lenses , 1979 .

[8]  H.M. Wechsler,et al.  Digital image processing, 2nd ed. , 1981, Proceedings of the IEEE.

[9]  A Boyde,et al.  Tandem scanning reflected light microscopy of internal features in whole bone and tooth samples , 1983, Journal of microscopy.

[10]  C. Sheppard,et al.  Theory and practice of scanning optical microscopy , 1984 .

[11]  D. Agard Optical sectioning microscopy: cellular architecture in three dimensions. , 1984, Annual review of biophysics and bioengineering.

[12]  P. Danielsson,et al.  Three-dimensional microscopy using a confocal laser scanning microscope. , 1985, Optics letters.

[13]  J Bille,et al.  Reconstructing 3-D light-microscopic images by digital image processing. , 1985, Applied optics.

[14]  A Boyde,et al.  In Vivo Microscopy Using the Tandem Scanning Microscope a , 1986, Annals of the New York Academy of Sciences.

[15]  M. Fordham,et al.  Use of confocal imaging in the study of biological structures. , 1987, Applied optics.

[16]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[17]  J. Depasquale,et al.  Evidence for an actin-containing cytoplasmic precursor of the focal contact and the timing of incorporation of vinculin at the focal contact , 1987, The Journal of cell biology.

[18]  M. Minsky Memoir on inventing the confocal scanning microscope , 1988 .

[19]  F S Fay,et al.  Three‐dimensional molecular distribution in single cells analysed using the digital imaging microscope , 1989, Journal of microscopy.

[20]  J. Lichtman,et al.  High-resolution imaging of synaptic structure with a simple confocal microscope. , 1989, The New biologist.

[21]  D. Agard,et al.  Fluorescence microscopy in three dimensions. , 1989, Methods in cell biology.

[22]  S R Goldstein,et al.  A confocal video‐rate laser‐beam scanning reflected‐light microscope with no moving parts , 1990, Journal of microscopy.

[23]  D. Agard,et al.  Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy. , 1990, Biophysical journal.

[24]  V. Garsky,et al.  Echistatin is a potent inhibitor of bone resorption in culture , 1990, The Journal of cell biology.

[25]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[26]  J. Depasquale,et al.  Accumulation of talin in nodes at the edge of the lamellipodium and separate incorporation into adhesion plaques at focal contacts in fibroblasts , 1991, The Journal of cell biology.

[27]  Z. Shao,et al.  Axial resolution of confocal microscopes with parallel‐beam detection , 1991, Journal of microscopy.

[28]  D. Rawlins,et al.  The point‐spread function of a confocal microscope: its measurement and use in deconvolution of 3‐D data , 1991 .

[29]  A. E. Dixon,et al.  A scanning confocal microscope for transmission and reflection imaging , 1991, Nature.

[30]  T J Holmes,et al.  Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[31]  C. Sheppard,et al.  Effects of image deconvolution on optical sectioning in conventional and confocal microscopes , 1993 .

[32]  Daniel L. Farkas,et al.  Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation , 1993, Nature.

[33]  Robert M. Clegg,et al.  Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale , 1993 .

[34]  L. J. Thomas,et al.  Artifacts in computational optical-sectioning microscopy. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  S. Hell,et al.  Lens Aberrations in Confocal Fluorescence Microscopy , 1995 .

[36]  H. M. Voort,et al.  Restoration of confocal images for quantitative image analysis , 1995 .

[37]  Direct View Confocal Imaging Systems Using a Slit Aperture , 1995 .

[38]  F S Fay,et al.  Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. , 1995, Science.

[39]  D. Ledbetter,et al.  Multicolor Spectral Karyotyping of Human Chromosomes , 1996, Science.

[40]  M. Kozubek,et al.  Efficient real-time confocal microscopy with white light sources , 1996, Nature.

[41]  D A Agard,et al.  Dispersion, aberration and deconvolution in multi‐wavelength fluorescence images , 1996, Journal of microscopy.

[42]  S W Hell,et al.  Far‐field fluorescence microscopy with three‐dimensional resolution in the 100‐nm range , 1997, Journal of microscopy.

[43]  T. Wilson,et al.  Method of obtaining optical sectioning by using structured light in a conventional microscope. , 1997, Optics letters.

[44]  Neil,et al.  Real‐time three‐dimensional imaging of macroscopic structures , 1998, Journal of microscopy.

[45]  T. Wilson,et al.  Real time 3D fluorescence microscopy by two beam interference illumination , 1998 .

[46]  F S Fay,et al.  Visualization of single RNA transcripts in situ. , 1998, Science.

[47]  P. Verveer,et al.  A comparison of image restoration approaches applied to three‐dimensional confocal and wide‐field fluorescence microscopy , 1999, Journal of microscopy.

[48]  Agard,et al.  I5M: 3D widefield light microscopy with better than 100 nm axial resolution , 1999, Journal of microscopy.

[49]  J. Conchello,et al.  Three-dimensional imaging by deconvolution microscopy. , 1999, Methods.

[50]  T. Jovin,et al.  An optical sectioning programmable array microscope implemented with a digital micromirror device , 1999, Journal of microscopy.

[51]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[52]  D. Arndt-Jovin,et al.  Three‐dimensional spectral imaging by Hadamard transform spectroscopy in a programmable array microscope , 2000, Journal of microscopy.

[53]  G. Patterson,et al.  Photobleaching in two-photon excitation microscopy. , 2000, Biophysical journal.

[54]  Neil,et al.  Wide‐field optically sectioning fluorescence microscopy with laser illumination , 2000, Journal of microscopy.

[55]  J. Conchello,et al.  Artefacts in restored images due to intensity loss in three‐dimensional fluorescence microscopy , 2001, Journal of microscopy.

[56]  J. Swedlow,et al.  A workingperson's guide to deconvolution in light microscopy. , 2001, BioTechniques.

[57]  D. Agard,et al.  Computational adaptive optics for live three-dimensional biological imaging , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Heintzmann,et al.  A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non‐conjugate images , 2001, Journal of microscopy.

[59]  J. Siegel,et al.  Time‐domain whole‐field fluorescence lifetime imaging with optical sectioning , 2001, Journal of microscopy.

[60]  J Boutet de Monvel,et al.  Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ. , 2001, Biophysical journal.

[61]  T Wilson,et al.  New imaging modes for lenslet‐array tandem scanning microscopes , 2002, Journal of microscopy.

[62]  Jason R Swedlow,et al.  Measuring tubulin content in Toxoplasma gondii: A comparison of laser-scanning confocal and wide-field fluorescence microscopy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  A. Boccara,et al.  High-resolution full-field optical coherence tomography with a Linnik microscope. , 2002, Applied optics.

[64]  Hans-Ulrich Dodt,et al.  Confocal microscopy in transmitted light , 2003, European Conference on Biomedical Optics.

[65]  T. Wilson,et al.  Quantitative polarized light microscopy , 2003, Journal of microscopy.

[66]  J. Murray,et al.  A common aberration with water‐immersion objective lenses , 2004, Journal of microscopy.

[67]  P. Davidovits,et al.  Observation of nerve fibers in incident light , 1969, Experientia.

[68]  A. K. Forrest REAL TIME THREE DIMENSIONAL IMAGING , 2006 .

[69]  H. E. Keller,et al.  Objective Lenses for Confocal Microscopy , 2006 .

[70]  J. Swedlow,et al.  Evaluating performance in three-dimensional fluorescence microscopy , 2007, Journal of microscopy.

[71]  Rainer Heintzmann,et al.  Breaking the resolution limit in light microscopy. , 2013, Methods in cell biology.