Unraveling the complex genetic model for cystic fibrosis: pleiotropic effects of modifier genes on early cystic fibrosis-related morbidities

[1]  S. Pandol The Exocrine Pancreas , 2014 .

[2]  J. Rommens,et al.  Genetic Modifiers of Cystic Fibrosis–Related Diabetes , 2013, Diabetes.

[3]  G. Cutting,et al.  Environmental allergies and respiratory morbidities in cystic fibrosis , 2013, Pediatric pulmonology.

[4]  F. Ratjen,et al.  Early lung disease in cystic fibrosis. , 2013, The Lancet. Respiratory medicine.

[5]  Annalise B. Paaby,et al.  The many faces of pleiotropy. , 2013, Trends in Genetics.

[6]  Laurent Gil,et al.  Ensembl 2013 , 2012, Nucleic Acids Res..

[7]  M. Rieder,et al.  Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis , 2012, Nature Genetics.

[8]  M. Rosenfeld,et al.  Analysis of the associations between lung function and clinical features in preschool children with Cystic Fibrosis , 2012, Pediatric pulmonology.

[9]  J. Ousingsawat,et al.  Differential contribution of SLC26A9 to Cl− conductance in polarized and non‐polarized epithelial cells , 2012, Journal of cellular physiology.

[10]  P. O’Reilly,et al.  MultiPhen: Joint Model of Multiple Phenotypes Can Increase Discovery in GWAS , 2012, PloS one.

[11]  A. Chang,et al.  Identification of radiological alveolar pneumonia in children with high rates of hospitalized respiratory infections: Comparison of WHO‐defined and pediatric pulmonologist diagnosis in the clinical context , 2012, Pediatric Pulmonology.

[12]  Michael R Knowles,et al.  Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis , 2012, Nature Genetics.

[13]  Stacey S. Cherny,et al.  Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets , 2011, Human Genetics.

[14]  F. Agakov,et al.  Abundant pleiotropy in human complex diseases and traits. , 2011, American journal of human genetics.

[15]  M. Corey,et al.  A novel lung disease phenotype adjusted for mortality attrition for cystic fibrosis Genetic modifier studies , 2011, Pediatric pulmonology.

[16]  Fred A. Wright,et al.  Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2 , 2011, Nature Genetics.

[17]  P. Paré,et al.  Modulatory effect of the SLC9A3 gene on susceptibility to infections and pulmonary function in children with cystic fibrosis , 2011, Pediatric pulmonology.

[18]  Loreto Gesualdo,et al.  Genome-wide association study identifies susceptibility loci for IgA nephropathy , 2011, Nature Genetics.

[19]  M. Corey,et al.  Understanding the population structure of North American patients with cystic fibrosis , 2011, Clinical genetics.

[20]  K. Boulukos,et al.  SLC26A9 stimulates CFTR expression and function in human bronchial cell lines , 2011, Journal of cellular physiology.

[21]  A. Bush,et al.  Does presenting with meconium ileus affect the prognosis of children with cystic fibrosis? , 2010, Pediatric pulmonology.

[22]  M. Griese,et al.  Long‐term pulmonary outcome after meconium ileus in cystic fibrosis , 2009, Pediatric pulmonology.

[23]  B. Wilcken Cystic fibrosis: refining the approach to newborn screening. , 2009, The Journal of pediatrics.

[24]  M. Corey,et al.  Genetic modifiers of liver disease in cystic fibrosis. , 2009, JAMA.

[25]  M. Romero,et al.  Slc26a9 Is Inhibited by the R-region of the Cystic Fibrosis Transmembrane Conductance Regulator via the STAS Domain* , 2009, The Journal of Biological Chemistry.

[26]  M. Drumm,et al.  A susceptibility gene for type 2 diabetes confers substantial risk for diabetes complicating cystic fibrosis , 2009, Diabetologia.

[27]  A. Moran,et al.  Cystic Fibrosis–Related Diabetes: Current Trends in Prevalence, Incidence, and Mortality , 2009, Diabetes Care.

[28]  M. Romero,et al.  Slc26a9—Anion Exchanger, Channel and Na+ Transporter , 2009, Journal of Membrane Biology.

[29]  G. Shull,et al.  Reduced NHE3-mediated Na+ absorption increases survival and decreases the incidence of intestinal obstructions in cystic fibrosis mice. , 2009, American journal of physiology. Gastrointestinal and liver physiology.

[30]  J. Pilewski,et al.  SLC26A9 is a constitutively active, CFTR-regulated anion conductance in human bronchial epithelia , 2009, The Journal of general physiology.

[31]  G. Cutting,et al.  Genetic modifiers play a substantial role in diabetes complicating cystic fibrosis. , 2009, The Journal of clinical endocrinology and metabolism.

[32]  Parinya Chamnan,et al.  Genetic Determinants and Epidemiology of Cystic Fibrosis–Related Diabetes , 2008, Diabetes Care.

[33]  D. Thwaites,et al.  Human solute carrier SLC6A14 is the β-alanine carrier , 2008, The Journal of physiology.

[34]  A. Hamosh,et al.  Heritability of lung disease severity in cystic fibrosis. , 2007, American journal of respiratory and critical care medicine.

[35]  M. Corey,et al.  Genetic and physiologic correlates of longitudinal immunoreactive trypsinogen decline in infants with cystic fibrosis identified through newborn screening. , 2006, The Journal of pediatrics.

[36]  A. Chakravarti,et al.  Relative contribution of genetic and nongenetic modifiers to intestinal obstruction in cystic fibrosis. , 2006, Gastroenterology.

[37]  Y. Aigrain,et al.  Clinical outcome of cystic fibrosis presenting with or without meconium ileus: a matched cohort study. , 2006, Journal of pediatric surgery.

[38]  A. Moran,et al.  Diabetes is associated with dramatically decreased survival in female but not male subjects with cystic fibrosis. , 2005, Diabetes care.

[39]  S. Butler,et al.  Epidemiology of cystic fibrosis-related diabetes. , 2005, The Journal of pediatrics.

[40]  M. Corey,et al.  Molecular consequences of cystic fibrosis transmembrane regulator (CFTR) gene mutations in the exocrine pancreas , 2003, Gut.

[41]  M. Corey,et al.  Glucose intolerance in children with cystic fibrosis. , 2003, The Journal of pediatrics.

[42]  J. Emerson,et al.  Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis , 2002, Pediatric pulmonology.

[43]  L. Holmberg,et al.  Predictors of deterioration of lung function in cystic fibrosis * , 2002, Pediatric pulmonology.

[44]  Mark D Schluchter,et al.  Jointly modelling the relationship between survival and pulmonary function in cystic fibrosis patients , 2002, Statistics in medicine.

[45]  B. Strandvik,et al.  Presence of cystic fibrosis‐related diabetes mellitus is tightly linked to poor lung function in patients with cystic fibrosis: Data from the European Epidemiologic Registry of Cystic Fibrosis , 2001, Pediatric pulmonology.

[46]  M. Polak,et al.  Cystic fibrosis‐related diabetes mellitus: clinical impact of prediabetes and effects of insulin therapy * , 2001, Acta paediatrica.

[47]  S. Mager,et al.  Cloning and Functional Expression of a Human Na+and Cl−-dependent Neutral and Cationic Amino Acid Transporter B0+ * , 1999, The Journal of Biological Chemistry.

[48]  M. Corey,et al.  Longitudinal analysis of pulmonary function decline in patients with cystic fibrosis. , 1997, The Journal of pediatrics.

[49]  M. Corey,et al.  Longitudinal evaluation of serum trypsinogen measurement in pancreatic-insufficient and pancreatic-sufficient patients with cystic fibrosis. , 1995, The Journal of pediatrics.

[50]  B. Thorsteinsson,et al.  Influence of the development of diabetes mellitus on clinical status in patients with cystic fibrosis , 1992, European Journal of Pediatrics.

[51]  M. Corey,et al.  Decline of Exocrine Pancreatic Function in Cystic Fibrosis Patients with Pancreatic Sufficiency , 1992, Pediatric Research.

[52]  M. Corey,et al.  Prediction of mortality in patients with cystic fibrosis. , 1992, The New England journal of medicine.

[53]  W. Ahmad,et al.  POLICIES, PILLS, AND POLITICAL WILL: A CRITIQUE OF POLICIES TO IMPROVE THE HEALTH STATUS OF ETHNIC MINORITIES , 1989, The Lancet.

[54]  S. Finkelstein,et al.  Diabetes mellitus associated with cystic fibrosis. , 1988, The Journal of pediatrics.

[55]  Z. Weizman [The exocrine pancreas in cystic fibrosis]. , 1986, Harefuah.

[56]  M. Corey,et al.  Age-Related Alterations of Immunoreactive Pancreatic Cationic Trypsinogen in Sera from Cystic Fibrosis Patients with and without Pancreatic Insufficiency , 1986, Pediatric Research.

[57]  P J Kumar,et al.  The Exocrine Pancreas. , 1980 .

[58]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[59]  M. Corey,et al.  Type of CFTR mutation determines risk of pancreatitis in patients with cystic fibrosis. , 2011, Gastroenterology.

[60]  S. Mager,et al.  Cloning and functional expression of a human Na(+) and Cl(-)-dependent neutral and cationic amino acid transporter B(0+). , 1999, The Journal of biological chemistry.

[61]  L. Tsui,et al.  Identification of the cystic fibrosis gene: genetic analysis. , 1989, Science.

[62]  J. H. Johnson,et al.  Determination of human pancreatic cationic trypsinogen in serum by radioimmunoassay. , 1979, The American journal of physiology.

[63]  P. di Sant'Agnese,et al.  Cystic fibrosis in adults: 75 cases and a review of 232 cases in the literature , 1979 .