Hybrid integrated quantum photonic circuits

Recent developments in chip-based photonic quantum circuits have radically impacted quantum information processing. However, it is challenging for monolithic photonic platforms to meet the stringent demands of most quantum applications. Hybrid platforms combining different photonic technologies in a single functional unit have great potential to overcome the limitations of monolithic photonic circuits. Our Review summarizes the progress of hybrid quantum photonics integration, discusses important design considerations, including optical connectivity and operation conditions, and highlights several successful realizations of key physical resources for building a quantum teleporter. We conclude by discussing the roadmap for realizing future advanced large-scale hybrid devices, beyond the solid-state platform, which hold great potential for quantum information applications. The Review summarizes the progress of hybrid quantum photonics integration in terms of its important design considerations and fabrication approaches, and highlights some successful realizations of key physical resources for building integrated quantum devices, such as quantum teleporters, quantum repeaters and quantum simulators.

[1]  Sébastien Tanzilli,et al.  On-chip generation of heralded photon-number states , 2016, Scientific Reports.

[2]  Wolfram H. P. Pernice,et al.  Diamond as a Platform for Integrated Quantum Photonics , 2018, Advanced Quantum Technologies.

[3]  Shanhui Fan,et al.  Inverse-designed photonic circuits for fully passive, bias-free Kerr-based nonreciprocal transmission and routing , 2019, 1905.04818.

[4]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[5]  D. Ritchie,et al.  Quantum photonics hybrid integration platform , 2015, 1507.00256.

[6]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[7]  Tommaso Lunghi,et al.  Quantum photonics at telecom wavelengths based on lithium niobate waveguides , 2016, 1608.01100.

[8]  Andreas W. Schell,et al.  A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures , 2016, Scientific Reports.

[9]  Carsten Rockstuhl,et al.  Fully integrated quantum photonic circuit with an electrically driven light source , 2016, Nature Photonics.

[10]  Fariba Hatami,et al.  Efficient extraction of zero-phonon-line photons from single nitrogen-vacancy centers in an integrated GaP-on-diamond platform , 2016, 1606.01826.

[11]  J. D. Thompson,et al.  Nanophotonic quantum phase switch with a single atom , 2014, Nature.

[12]  A. Feizpour,et al.  High-speed noise-free optical quantum memory , 2017, 1704.00013.

[13]  Michael J. Bremner,et al.  Quantum sampling problems, BosonSampling and quantum supremacy , 2017, npj Quantum Information.

[14]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[15]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[16]  U. Levy,et al.  Nanoscale light–matter interactions in atomic cladding waveguides , 2012, Nature communications.

[17]  R Schmogrow,et al.  Photonic wire bonding: a novel concept for chip-scale interconnects. , 2012, Optics express.

[18]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[19]  Oliver Benson,et al.  A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices. , 2011, The Review of scientific instruments.

[20]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[21]  Christian Schneider,et al.  High-efficiency multiphoton boson sampling , 2017, Nature Photonics.

[22]  Dries Vercruysse,et al.  4H-SiC-on-Insulator Platform for Quantum Photonics , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[23]  Dan Dalacu,et al.  Strain-Tunable Quantum Integrated Photonics , 2018, Nano letters.

[24]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[25]  Arnan Mitchell,et al.  Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits , 2018 .

[26]  Christian Schneider,et al.  Quantum Frequency Conversion of a Quantum Dot Single-Photon Source on a Nanophotonic Chip. , 2019, Optica.

[27]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[28]  V. Zwiller,et al.  On-demand generation of background-free single photons from a solid-state source , 2017, 1712.06937.

[29]  V. Zwiller,et al.  Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits , 2016, IEEE Photonics Journal.

[30]  J. Song,et al.  Single-photon non-linear optics with a quantum dot in a waveguide , 2015, Nature communications.

[31]  Edmund Clarke,et al.  On-chip interference of single photons from an embedded quantum dot and an external laser , 2016 .

[32]  Michael Siegel,et al.  Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic Semiconductor-Superconductor Platform , 2018, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[33]  Anthony L Lentine,et al.  Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode. , 2017, Optics express.

[34]  H. Giessen,et al.  Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres , 2016, Nature Communications.

[35]  Christopher J. K. Richardson,et al.  Integration of quantum dots with lithium niobate photonics , 2018, Applied Physics Letters.

[36]  Christian Hepp,et al.  Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. , 2012, Physical review letters.

[37]  Benson,et al.  Regulated and entangled photons from a single quantum Dot , 2000, Physical review letters.

[38]  Michal Lipson,et al.  Plug-and-play fiber to waveguide connector. , 2019, Optics express.

[39]  Luke R. Wilson,et al.  High Purcell factor generation of indistinguishable on-chip single photons , 2017, Nature Nanotechnology.

[40]  L. Liu,et al.  High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond , 2018, Nature Photonics.

[41]  Yasuhiko Arakawa,et al.  Transfer-printed single photon sources coupled to wire waveguides , 2018, 1801.07915.

[42]  Ming-Cheng Chen,et al.  Single quantum emitters in monolayer semiconductors. , 2015, Nature nanotechnology.

[43]  Dirk Englund,et al.  An Aluminum Nitride Integrated Photonics Platform for the Ultraviolet to Visible Spectrum , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[44]  C. Xiong,et al.  Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics , 2012, 1210.0975.

[45]  A. M. Fox,et al.  Monolithic integration of a quantum emitter with a compact on-chip beam-splitter , 2014, 1404.0518.

[46]  M. Lukin,et al.  Efficient all-optical switching using slow light within a hollow fiber. , 2009, Physical review letters.

[47]  Dries Vercruysse,et al.  Inverse-designed diamond photonics , 2018, Nature Communications.

[48]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[49]  Michal Lipson,et al.  Athermal silicon microring resonators with titanium oxide cladding. , 2013, Optics express.

[50]  W. Freude,et al.  In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration , 2018 .

[51]  Vahid Sandoghdar,et al.  Chip-Based All-Optical Control of Single Molecules Coherently Coupled to a Nanoguide. , 2017, Nano letters.

[52]  Dan Dalacu,et al.  On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits , 2017, Nature Communications.

[53]  Dan Dalacu,et al.  Deterministic Integration of Single Photon Sources in Silicon Based Photonic Circuits. , 2016, Nano letters.

[54]  Chao Li,et al.  Review of Silicon Photonics Foundry Efforts , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  R. Blatt,et al.  Deterministic single-photon source from a single ion , 2009, 0905.2885.

[56]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[57]  Sergey I. Bozhevolnyi,et al.  Ultrabright single-photon emission from germanium-vacancy zero-phonon lines: deterministic emitter-waveguide interfacing at plasmonic hot spots , 2019, Nanophotonics.

[58]  W. Moerner,et al.  Single photons on demand from a single molecule at room temperature , 2000, Nature.

[59]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[60]  Michal Lipson,et al.  Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit , 2014, Physical Review X.

[61]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[62]  Jian-Wei Pan,et al.  On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability. , 2019, Physical review letters.

[63]  Hang Zheng,et al.  Detuning effect in quantum dynamics of a strongly coupled single quantum dot–cavity system , 2008 .

[64]  P. Kwiat,et al.  High-efficiency single-photon generation via large-scale active time multiplexing , 2018, Science Advances.

[65]  Juerg Leuthold,et al.  Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon , 2018, Nature Materials.

[66]  John D. Siirola,et al.  Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[67]  Xiang Guo,et al.  Parametric down-conversion photon-pair source on a nanophotonic chip , 2016, Light: Science & Applications.

[68]  L Zimmermann,et al.  Packaging and Assembly for Integrated Photonics—A Review of the ePIXpack Photonics Packaging Platform , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[69]  David Hillerkuss,et al.  Photonic Wire Bonds for Terabit/s Chip-to-Chip Interconnects , 2011, 1111.0651.

[70]  M. Lipson,et al.  Battery-operated integrated frequency comb generator , 2018, Nature.

[71]  Ali Adibi,et al.  High-efficiency and Wideband Interlayer Grating Couplers in Multilayer Si/sio 2 /sin Platform for 3d Integration of Optical Functionalities References and Links , 2022 .

[72]  Dirk Englund,et al.  Hybrid integration methods for on-chip quantum photonics , 2019 .

[73]  Marcelo Davanco,et al.  Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/ Si3N4 quantum photonic circuits. , 2019, Nano letters.

[74]  Jeremy L O'Brien,et al.  Active temporal and spatial multiplexing of photons , 2016 .

[75]  Marco Barbieri,et al.  Quantum teleportation on a photonic chip , 2014, Nature Photonics.

[76]  Quentin Wilmart,et al.  Low-loss, compact, spot-size-converter based vertical couplers for photonic integrated circuits , 2019, Journal of Physics D: Applied Physics.

[77]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[78]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[79]  D. A. Ritchie,et al.  Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit , 2018, 1803.04468.

[80]  Daniel J. Blumenthal,et al.  Silicon Nitride in Silicon Photonics , 2018, Proceedings of the IEEE.

[81]  Igor Aharonovich,et al.  Integrated on Chip Platform with Quantum Emitters in Layered Materials , 2019, Advanced Optical Materials.

[82]  L. Mandel,et al.  Photon Antibunching in Resonance Fluorescence , 1977 .

[83]  Y. Ivry,et al.  Superconducting Nanowires for Single‐Photon Detection: Progress, Challenges, and Opportunities , 2018, Advanced Quantum Technologies.

[84]  Vladimir M. Shalaev,et al.  Material Platforms for Integrated Quantum Photonics , 2016 .

[85]  J. Thompson,et al.  Atomic Source of Single Photons in the Telecom Band. , 2018, Physical review letters.

[86]  Dries Vercruysse,et al.  4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics , 2020 .

[87]  Mark G. Thompson,et al.  GaAs integrated quantum photonics: Towards compact and multi‐functional quantum photonic integrated circuits (Laser Photonics Rev. 10(6)/2016) , 2016 .

[88]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[89]  C. M. Natarajan,et al.  Superconducting nanowire single-photon detectors: physics and applications , 2012, 1204.5560.

[90]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[91]  Oliver Benson,et al.  Photostable Molecules on Chip: Integrated Sources of Nonclassical Light , 2017 .

[92]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[93]  G. Guo,et al.  Progress on Integrated Quantum Photonic Sources with Silicon , 2019, Advanced Quantum Technologies.

[94]  T. Ohshima,et al.  A silicon carbide room-temperature single-photon source. , 2013, Nature materials.

[95]  J. Rogers,et al.  GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies , 2010, Nature.

[96]  Marko Loncar,et al.  Monolithic ultra-high-Q lithium niobate microring resonator , 2017, 1712.04479.

[97]  Martin Winger,et al.  Photon antibunching in the photoluminescence spectra of a single carbon nanotube. , 2007, Physical review letters.

[98]  Sae Woo Nam,et al.  Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices , 2016, Nature Communications.

[99]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[100]  Yasuhiko Arakawa,et al.  Strongly Coupled Single-Quantum-Dot–Cavity System Integrated on a CMOS-Processed Silicon Photonic Chip , 2018, Physical Review Applied.

[101]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[102]  T. Umeda,et al.  A room temperature single photon source in silicon carbide , 2013, CLEO: 2013.

[103]  Alan Y. Liu,et al.  Heterogeneous Silicon Photonic Integrated Circuits , 2016, Journal of Lightwave Technology.

[104]  Aleksandar Nesic,et al.  Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding , 2018, Optica.

[105]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature communications.

[106]  Dirk Englund,et al.  Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip , 2019, Nature Communications.

[107]  Dirk Englund,et al.  Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip. , 2017, Nano letters.

[108]  Wolfram Pernice,et al.  On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source. , 2017, Nano letters.