Constructing Anisotropic Geometric Metrics using Octrees and Skeletons

A three-dimensional anisotropic metric for geometry-based mesh adaptation is constructed from a triangulated domain definition. First, a Cartesian background octree is refined according to not only boundary curvature but also a local separation criterion from digital topology theory. This octree is then used to extract the domain skeleton through a medial axis transform. Finally, an efficient anisotropic metric is computed on the octree using the curvature tensor estimated from the boundary triangulation and the local domain thickness information embedded in the skeleton. Applications to geometric adaptation of overlay meshes used in grid-based methods for unstructured hexahedral mesh generation are also presented.

[1]  Steven E. Benzley,et al.  Sculpting: An Improved Inside-Out Scheme for All-Hexahedral Meshing , 2002, IMR.

[2]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[3]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[4]  Ko-Foa Tchon,et al.  OCTREE-BASED HEXAHEDRAL MESH GENERATION FOR Viscous FLOW SIMULATIONS , 1997 .

[5]  J. Tsitsiklis Efficient algorithms for globally optimal trajectories , 1995, IEEE Trans. Autom. Control..

[6]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[7]  Michael J. Aftosmis,et al.  Robust and efficient Cartesian mesh generation for component-based geometry , 1997 .

[8]  Gabriel Taubin,et al.  Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[9]  Robert Schneiders,et al.  Octree-Based Hexahedral Mesh Generation , 2000, Int. J. Comput. Geom. Appl..

[10]  S. Pirzadeh Structured background grids for generation of unstructured grids by advancing front method , 1991 .

[11]  Mark S. Shephard,et al.  Approaches to the Automatic Generation and Control of Finite Element Meshes , 1988 .

[12]  R. Schneiders,et al.  A grid-based algorithm for the generation of hexahedral element meshes , 1996, Engineering with Computers.

[13]  Ronald N. Perry,et al.  Simple and Efficient Traversal Methods for Quadtrees and Octrees , 2002, J. Graphics, GPU, & Game Tools.

[14]  Eric Seveno Generation automatique de maillages tridimensionnels isotropes par une methode frontale , 1998 .

[15]  Ted D. Blacker Meeting the Challenge for Automated Conformal Hexahedral Meshing , 2000 .

[16]  Steven J. Owen,et al.  Neighborhood-Based Element Sizing Control for Finite Element Surface Meshing , 1997 .

[17]  Luiz Fernando Martha,et al.  Mesh Generation on High-Curvature Surfaces Based on a Background Quadtree Structure , 2002, IMR.

[18]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[19]  Longin Jan Latecki,et al.  Digital Topology , 1994 .

[20]  J. Bonet,et al.  An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems , 1991 .

[21]  S. Saigal Automatic boundary sizing for 2D and 3D meshes , 1997 .

[22]  Pascal J. Frey,et al.  About Surface Remeshing , 2000, IMR.

[23]  Hanan Samet,et al.  A quadtree medial axis transform , 1983, Commun. ACM.

[24]  Dinesh Manocha,et al.  Efficient computation of a simplified medial axis , 2003, SM '03.

[25]  Wayne Oaks,et al.  Polyhedral Mesh Generation , 2000, IMR.

[26]  Pascal J. Frey,et al.  Fast Adaptive Quadtree Mesh Generation , 1998, IMR.

[27]  Yannis Kallinderis,et al.  Hybrid prismatic/tetrahedral grid generation for complex geometries , 1995 .

[28]  Marie-Gabrielle Vallet,et al.  Progress on Vertex Relocation Schemes for Structured Grids in a Metric Space , 2002 .

[29]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[30]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[31]  Ricardo Camarero,et al.  Conformal Refinement of All-Quadrilateral and All-Hexahedral Meshes According to an Anisotropic Metric , 2002, IMR.

[32]  Loïc Maréchal A New Approach to Octree-Based Hexahedral Meshing , 2001, IMR.

[33]  Jin Zhu,et al.  Background Overlay Grid Size Functions , 2002, IMR.

[34]  R. Taghavi Automatic, parallel and fault tolerant mesh generation from CAD , 2005, Engineering with Computers.

[35]  Ming C. Lin,et al.  Efficient computation of a simplified medial axis , 2003, ACM Symposium on Solid Modeling and Applications.

[36]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[37]  Marie-Gabrielle Vallet Génération de maillages éléments finis anisotropes et adaptatifs , 1992 .

[38]  H. Deconinck,et al.  Adaptive hybrid remeshing and SUPG/MultiD-upwind solver for compressible high Reynolds number flows , 1997 .

[39]  Jonathan Richard Shewchuk,et al.  Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..