Particle swarm optimisation of a discontinuous control for a wheeled mobile robot with two trailers

This paper addresses the stabilisation problem of nonholonomic mobile robot with two trailers. A discontinuous control law is built after a suitable change of variables to achieve a quasi-exponential convergence of the system variables to the origin. Particle Swarm Optimisation technique is used to tune the controller parameters for optimised transient performance under constrained control signals. Simulation results are presented to illustrate the effectiveness of the presented approach.

[1]  Georges Bastin,et al.  Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization , 1995, Int. J. Robotics Res..

[2]  Faical Mnif,et al.  Recursive Backstepping Stabilization of a Wheeled Mobile Robot , 2005 .

[3]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[4]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[5]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[6]  James E. Campbell,et al.  An Approach to Sensitivity Analysis of Computer Models: Part I—Introduction, Input Variable Selection and Preliminary Variable Assessment , 1981 .

[7]  R. Murray,et al.  Nonholonomic systems and exponential convergence: some analysis tools , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[8]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[9]  A. Astolfi Discontinuous control of nonholonomic systems , 1996 .

[10]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[11]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[12]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[13]  Ilya Kolmanovsky,et al.  Developments in nonholonomic control problems , 1995 .

[14]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[15]  Jean-Baptiste Pomet Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift , 1992 .

[16]  Hisham M. Soliman,et al.  A robust power-system stabiliser design using swarm optimisation , 2006, Int. J. Model. Identif. Control..