Building a Concept-Level Sentiment Dictionary Based on Commonsense Knowledge

Sentiment dictionaries are essential for research in the sentiment analysis field. A two-step method integrates iterative regression and random walk with in-link normalization to build a concept-level sentiment dictionary. The approach uses ConceptNet as a framework to propagate sentiment values, based on the assumption that semantically related concepts share a common sentiment.

[1]  Push Singh,et al.  The Public Acquisition of Commonsense Knowledge , 2002 .

[2]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[3]  Henry Lieberman,et al.  A model of textual affect sensing using real-world knowledge , 2003, IUI '03.

[4]  Erik Cambria,et al.  Sentic Computing: Techniques, Tools, and Applications , 2012 .

[5]  Diana Inkpen,et al.  Using sentiment orientation features for mood classification in blogs , 2009, 2009 International Conference on Natural Language Processing and Knowledge Engineering.

[6]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[7]  Erik Cambria,et al.  SenticNet: A Publicly Available Semantic Resource for Opinion Mining , 2010, AAAI Fall Symposium: Commonsense Knowledge.

[8]  G. A. Mishne,et al.  Expiriments with mood classification in blog posts , 2005, SIGIR 2005.

[9]  Catherine Havasi,et al.  ConceptNet 3 : a Flexible , Multilingual Semantic Network for Common Sense Knowledge , 2007 .

[10]  K. Scherer Psychological models of emotion. , 2000 .

[11]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[12]  M. Bradley,et al.  Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings , 1999 .

[13]  Rayleigh The Problem of the Random Walk , 1905, Nature.

[14]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.