Narrowing Semantic Gap in Content-based Image Retrieval

Due to the low-level image features it utilizes, the semantic gap problem is hard to bridge and performance of CBIR systems is still far away from users' expectation. Image annotation, region-based image retrieval and relevance feedback are three main approaches for narrowing the "semantic gap". In this paper, recent development in these fields are reviewed and some future directions are proposed in the end.

[1]  J. Jeon,et al.  Automatic Image Annotation of News Images with Large Vocabularies and Low Quality Training Data , 2004 .

[2]  Marcello Pelillo,et al.  Content-based image retrieval with relevance feedback using random walks , 2011, Pattern Recognit..

[3]  Kong Fanhui Image Semantic Annotation Based on Gaussian Mixture Model , 2011, 2011 Fourth International Conference on Intelligent Computation Technology and Automation.

[4]  Edward Y. Chang,et al.  CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines , 2003, IEEE Trans. Circuits Syst. Video Technol..

[5]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[6]  R. Manmatha,et al.  Multiple Bernoulli relevance models for image and video annotation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[7]  Michela Bertolotto,et al.  Task-based annotation and retrieval for image information management , 2010, Multimedia Tools and Applications.

[8]  Bo Zhang,et al.  Gaussian mixture model for relevance feedback in image retrieval , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[9]  John Shawe-Taylor,et al.  Improving "bag-of-keypoints" image categorisation: Generative Models and PDF-Kernels , 2005 .

[10]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[11]  Shaoping Ma,et al.  Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning , 2003, IEEE Trans. Image Process..

[12]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[13]  Michael Stonebraker,et al.  Chabot: Retrieval from a Relational Database of Images , 1995, Computer.

[14]  Qi Tian,et al.  MultiPRE: a novel framework with multiple parallel retrieval engines for content-based image retrieval , 2005, ACM Multimedia.

[15]  R. Manmatha,et al.  Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.

[16]  S. Sclaroff,et al.  ImageRover: a content-based image browser for the World Wide Web , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[17]  Shinji Ozawa,et al.  A hierarchical approach for region-based image retrieval , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[18]  Lei Zhang,et al.  Image annotation by incorporating word correlations into multi-class SVM , 2011, Soft Comput..

[19]  Ning Zhou,et al.  A Hybrid Probabilistic Model for Unified Collaborative and Content-Based Image Tagging , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Jong-An Park,et al.  Feature extraction through generalization of histogram refinement technique for local region‐based object attributes , 2011, Int. J. Imaging Syst. Technol..

[21]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Yang Hongying,et al.  A novel regions-of-interest based image retrieval using multiple features , 2006, 2006 12th International Multi-Media Modelling Conference.

[23]  Bo Zhang,et al.  An efficient and effective region-based image retrieval framework , 2004, IEEE Transactions on Image Processing.

[24]  H. Greenspan,et al.  Region correspondence for image matching via EMD flow , 2000, 2000 Proceedings Workshop on Content-based Access of Image and Video Libraries.

[25]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Raimondo Schettini,et al.  Image annotation using SVM , 2003, IS&T/SPIE Electronic Imaging.

[27]  Hong Chang,et al.  Stepwise Metric Adaptation Based on Semi-Supervised Learning for Boosting Image Retrieval Performance , 2005, BMVC.

[28]  Alberto Del Bimbo,et al.  Diversity in multimedia information retrieval research , 2006, MIR '06.

[29]  Jing Peng,et al.  Adaptive quasiconformal kernel metric for image retrieval , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[30]  Yafei Zhang,et al.  Dynamic Adaboost learning with feature selection based on parallel genetic algorithm for image annotation , 2010, Knowl. Based Syst..

[31]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[32]  Chun Chen,et al.  Improve Image Annotation by Combining Multiple Models , 2007, 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System.

[33]  Thomas S. Huang,et al.  Edge-based structural features for content-based image retrieval , 2001, Pattern Recognit. Lett..

[34]  Nuno Vasconcelos,et al.  Learning Over Multiple Temporal Scales in Image Databases , 2000, ECCV.

[35]  Gerald Schaefer,et al.  An Integrative Semantic Framework for Image Annotation and Retrieval , 2007 .

[36]  Gustavo Carneiro,et al.  A database centric view of semantic image annotation and retrieval , 2005, SIGIR '05.

[37]  A.W.M. Smeulders,et al.  PicToSeek: A Content-based Image Search Engine for the WWW , 1997 .

[38]  Sagarmay Deb Using Relevance Feedback in Bridging Semantic Gaps in Content-Based Image Retrieval , 2010, 2010 Second International Conference on Advances in Future Internet.

[39]  A. Likas,et al.  Relevance feedback approach for image retrieval combining support vector machines and adapted Gaussian mixture models , 2011, IET Image Processing.

[40]  Jianping Fan,et al.  Automatic image annotation by incorporating feature hierarchy and boosting to scale up SVM classifiers , 2006, MM '06.

[41]  C.-Y. Li,et al.  Relevance feedback using generalized Bayesian framework with region-based optimization learning , 2005, IEEE Transactions on Image Processing.

[42]  Yan Gao,et al.  A Review of Region-Based Image Retrieval , 2010, J. Signal Process. Syst..

[43]  Oge Marques,et al.  Using visual attention to extract regions of interest in the context of image retrieval , 2006, ACM-SE 44.

[44]  Zhiwu Lu,et al.  Spatial Markov Kernels for Image Categorization and Annotation , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[45]  Masashi Inoue On the need for annotation-based image retrieval , 2004 .

[46]  Li Song,et al.  Using Neural Network to combine measures of word semantic similarity for image annotation , 2011, 2011 IEEE International Conference on Information and Automation.

[47]  Nikolas P. Galatsanos,et al.  Probabilistic relevance feedback approach for content-based image retrieval based on gaussian mixture models , 2009, IET Image Process..

[48]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Xiaojun Qi,et al.  A retrieval pattern-based inter-query learning approach for content-based image retrieval , 2010, 2010 IEEE International Conference on Image Processing.

[50]  Nuno Vasconcelos,et al.  Learning from User Feedback in Image Retrieval Systems , 1999, NIPS.

[51]  Chew Lim Tan,et al.  A Semantic Similarity Language Model to Improve Automatic Image Annotation , 2010, 2010 22nd IEEE International Conference on Tools with Artificial Intelligence.

[52]  Djemel Ziou,et al.  Relevance feedback for CBIR: a new approach based on probabilistic feature weighting with positive and negative examples , 2006, IEEE Transactions on Image Processing.

[53]  Yixin Chen,et al.  A Region-Based Fuzzy Feature Matching Approach to Content-Based Image Retrieval , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Roger Wattenhofer,et al.  Layers and Hierarchies in Real Virtual Networks , 2007, IEEE/WIC/ACM International Conference on Web Intelligence (WI'07).

[55]  Florent Perronnin,et al.  A similarity measure between unordered vector sets with application to image categorization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[56]  Shinji Ozawa,et al.  Semantic-meaningful content-based image retrieval in wavelet domain , 2003, MIR '03.

[57]  Chihli Hung and Chih-Fong Tsai,et al.  Automatically Annotating Images with Keywords: A Review of Image Annotation Systems , 2008 .

[58]  James Ze Wang,et al.  IRM: integrated region matching for image retrieval , 2000, ACM Multimedia.

[59]  Hui Liu,et al.  A New Co-training Approach Based on SVM for Image Retrieval , 2011, ICIC 2011.

[60]  Jianping Fan,et al.  Automatic image annotation by using concept-sensitive salient objects for image content representation , 2004, SIGIR '04.

[61]  Jefersson Alex dos Santos,et al.  A relevance feedback method based on genetic programming for classification of remote sensing images , 2011, Inf. Sci..

[62]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[63]  Lei Zhang,et al.  Image Annotation by Incorporating Word Correlations into Multi-class SVM , 2009, 2009 Fifth International Conference on Natural Computation.

[64]  Nuno Vasconcelos,et al.  The Kullback-Leibler Kernel as a Framework for Discriminant and Localized Representations for Visual Recognition , 2004, ECCV.

[65]  Qionghai Dai,et al.  Similarity-based online feature selection in content-based image retrieval , 2006, IEEE Transactions on Image Processing.

[66]  Michael I. Jordan,et al.  Modeling annotated data , 2003, SIGIR.