From the Sun to the Earth: The 13 May 2005 Coronal Mass Ejection

We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching −263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.

[1]  Bruce T. Tsurutani,et al.  The extreme magnetic storm of 1–2 September 1859 , 2003 .

[2]  J. Hargreaves The Solar-Terrestrial Environment: An Introduction to Geospace - the Science of the Terrestrial Upper Atmosphere, Ionosphere, and Magnetosphere , 1992 .

[3]  David J. McComas,et al.  The Ulysses solar wind plasma experiment , 1992 .

[4]  E. Kallio,et al.  On the responses to solar X‐ray flare and coronal mass ejection in the ionospheres of Mars and Earth , 2009 .

[5]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[6]  J. Linker,et al.  The solar wind at solar maximum: comparisons of EISCAT IPS and in situ observations , 2002 .

[7]  M. Owens,et al.  Non-radial solar wind flows induced by the motion of interplanetary coronal mass ejections , 2004 .

[8]  C. P. Escoubet,et al.  CLUSTER – SCIENCE AND MISSION OVERVIEW , 1997 .

[9]  Chang Liu,et al.  The May 13, 2005 Eruption: Observations, Data Analysis and Interpretation , 2006 .

[10]  M. Buonsanto Ionospheric Storms — A Review , 1999 .

[11]  J. Linker,et al.  An empirically‐driven global MHD model of the solar corona and inner heliosphere , 2001 .

[12]  S. Habbal,et al.  The long-term stability of the visible F corona at heights of 3-6 R⊙ , 2007 .

[13]  W. Coles Interplanetary scintillation observations of the high-latitude solar wind , 1995 .

[14]  Bernard V. Jackson,et al.  Three-Dimensional Tomography of Interplanetary Disturbances , 2004 .

[15]  V. Bothmer,et al.  The structure and origin of magnetic clouds in the solar wind , 1997 .

[16]  Alan Wood,et al.  Multi-instrument observations of nightside plasma patches under conditions of IMF Bz positive , 2008 .

[17]  Nobuyuki Kaya,et al.  The Low Energy Particle (LEP) Experiment onboard the GEOTAIL Satellite , 1994 .

[18]  V. K. Kapahi,et al.  Large Steerable Radio Telescope at Ootacamund, India , 1971 .

[19]  B. Anderson,et al.  High‐latitude ionosphere convection and Birkeland current response for the 15 May 2005 magnetic storm recovery phase , 2008 .

[20]  Harald U. Frey,et al.  Far Ultraviolet Imaging from the Image Spacecraft. 2. Wideband FUV Imaging , 2000 .

[21]  A. Buffington,et al.  Three-dimensional reconstructions of the early November 2004 Coordinated Data Analysis Workshop geomagnetic storms: Analyses of STELab IPS speed and SMEI density data , 2008 .

[22]  B. Fleck,et al.  SOHO: The Solar and Heliospheric Observatory , 1995 .

[23]  M. Kaiser,et al.  A new method for studying remote type II radio emissions from coronal mass ejection‐driven shocks , 1998 .

[24]  Bernard V. Jackson,et al.  The Solar Mass-Ejection Imager (SMEI) Mission , 2003 .

[25]  P. K. Manoharan,et al.  3-D reconstructions of the early-November 2004 CDAW geomagnetic storms: analysis of Ooty IPS speed and density data , 2009 .

[26]  W. Neupert,et al.  EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission , 1995 .

[27]  P. J. Williams,et al.  Measurements of the direction of the solar wind using interplanetary scintillation , 1998 .

[28]  W. I. Axford,et al.  CELIAS - Charge, Element and Isotope Analysis System for SOHO , 1995 .

[29]  Manuel Grande,et al.  PEACE: A PLASMA ELECTRON AND CURRENT EXPERIMENT , 1997 .

[30]  N. Gopalswamy Interplanetary Radio Bursts , 2002 .

[31]  M. Fehringer,et al.  Introduction The Cluster mission , 2001 .

[32]  P. Reiff,et al.  IMF By-dependent plasma flow and Birkeland currents in the dayside magnetosphere: 2. A global model for northward and southward IMF , 1985 .

[33]  J. W. Griffee,et al.  Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer , 1998 .

[34]  A. Buffington,et al.  Low-Resolution STELab IPS 3D Reconstructions of the Whole Heliosphere Interval and Comparison with in-Ecliptic Solar Wind Measurements from STEREO and Wind Instrumentation , 2009 .

[35]  I. Papamastorakis,et al.  First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment , 2001 .

[36]  Mario M. Bisi,et al.  Large-scale structure of the fast solar wind , 2007 .

[37]  K. Widing Forbidden lines of Fe XIX, Fe XX, and Fe XXI in solar flares. , 1978 .

[38]  C. Perche,et al.  WAVES: The radio and plasma wave investigation on the wind spacecraft , 1995 .

[39]  R. A. Jones,et al.  Combined EISCAT/ESR/MERLIN interplanetary scintillation observations of the solar wind , 2005 .

[40]  A. Hewish,et al.  Interplanetary Scintillation of Small Diameter Radio Sources , 1964, Nature.

[41]  A. Brekke,et al.  Physics of the Upper Polar Atmosphere , 1997 .

[42]  W. A. Coles,et al.  A bimodal model of the solar wind speed , 1996 .

[43]  R. Fallows,et al.  Developments in the use of EISCAT for interplanetary scintillation , 2008 .

[44]  B. Rickett,et al.  IPS observations of the solar wind speed out of the ecliptic , 1976 .

[45]  J. Gosling The solar flare myth , 1993 .

[46]  N. Gopalswamy,et al.  Type II radio bursts and energetic solar eruptions , 2003 .

[47]  N. Lugaz,et al.  Solar – Terrestrial Simulation in the STEREO Era: The 24 – 25 January 2007 Eruptions , 2009, 0902.2004.

[48]  Harald U. Frey,et al.  Far Ultraviolet Imaging from the Image Spacecraft , 2000 .

[49]  M. Bisi,et al.  Interplanetary scintillation using EISCAT and MERLIN: extremely long baselines at multiple frequencies , 2007 .

[50]  Peter Messmer,et al.  PHOENIX-2: A New Broadband Spectrometer for Deci- metric and Microwave Radio Bursts – First Results , 1999 .

[51]  Bernard V. Jackson,et al.  Heliospheric tomography using interplanetary scintillation observations , 1997 .

[52]  Chang Liu,et al.  The Eruption from a Sigmoidal Solar Active Region on 2005 May 13 , 2007, 0707.2240.

[53]  S. Poedts,et al.  Linking two consecutive nonmerging magnetic clouds with their solar sources , 2009, 1212.5546.

[54]  H. Goldstein On the field configuration in magnetic clouds , 1983 .

[55]  P. K. Manoharan,et al.  Determination of solar-wind velocities using single-station measurements of interplanetary scintillation , 1990 .

[56]  J. Moen,et al.  Reconfiguration and closure of lobe flux by reconnection during northward IMF: possible evidence for signatures in cusp/cleft auroral emissions , 1999 .

[57]  J. L. Culhane,et al.  The Coronal Diagnostic Spectrometer for the solar and heliospheric observatory , 1995 .

[58]  E. Friis-christensen,et al.  Magnetic activity in the polar cap—A new index , 1988 .

[59]  R. Skoug,et al.  Magnetic reconnection at the heliospheric current sheet and the formation of closed magnetic field lines in the solar wind , 2006 .

[60]  N. Gopalswamy,et al.  Large-Scale Solar Eruptions , 2010 .

[61]  M. Kaiser,et al.  Stereo Mission Overview , 2004, 2007 IEEE Aerospace Conference.

[62]  A. Lara,et al.  Dynamics of interplanetary CMEs and associated type II bursts , 2008, Proceedings of the International Astronomical Union.

[63]  Christine Jordan,et al.  Extremely long baseline interplanetary scintillation measurements of solar wind velocity , 2006 .

[64]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO) , 1995 .

[65]  R. A. Fallows,et al.  Interplanetary Scintillation Observations of Stream Interaction Regions in the Solar Wind , 2010 .

[66]  D. Odstrcil,et al.  Numerical simulation of interplanetary disturbances , 2009 .

[67]  N. Gopalswamy,et al.  Modeling and prediction of fast CME/shocks associated with type II bursts , 2008, Proceedings of the International Astronomical Union.

[68]  Shadia Rifai Habbal,et al.  The Depiction of Coronal Structure in White-Light Images , 2006, astro-ph/0602174.

[69]  MAPPING THE STRUCTURE OF THE CORONA USING FOURIER BACKPROJECTION TOMOGRAPHY , 2009 .

[70]  H. Rishbeth,et al.  The EISCAT ionospheric radar - The system and its early results , 1985 .

[71]  A. Buffington,et al.  Solar Mass Ejection Imager 3-D reconstruction of the 27-28 May 2003 coronal mass ejection sequence , 2008 .

[72]  K. Marubashi Structure of the interplanetary magnetic clouds and their solar origins , 1986 .

[73]  G. Noci,et al.  The ulysses space mission , 1992 .

[74]  N. Kleimenova,et al.  Daytime quasiperiodic geomagnetic pulsations during the recovery phase of the strong magnetic storm of May 15, 2005 , 2007 .

[75]  Hugh S. Hudson,et al.  Onset of the Magnetic Explosion in Solar Flares and Coronal Mass Ejections , 2001 .

[76]  Michael Mendillo,et al.  Storms in the ionosphere: Patterns and processes for total electron content , 2006 .

[77]  R. A. Jones,et al.  Dual‐frequency interplanetary scintillation observations of the solar wind , 2006 .

[78]  C. J. Wolfson,et al.  The Solar Oscillations Investigation - Michelson Doppler Imager , 1995 .

[79]  W. Gonzalez,et al.  The association of coronal mass ejections with their effects near the Earth , 2005 .

[80]  B. Jackson,et al.  Three-Dimensional (3-D) Reconstructions of EISCAT IPS Velocity Data in the Declining Phase of Solar Cycle 23 , 2010 .

[81]  V. Yurchyshyn,et al.  Flux Rope Model of the 2003 October 28-30 Coronal Mass Ejection and Interplanetary Coronal Mass Ejection , 2006 .

[82]  J. Linker,et al.  Magnetohydrodynamic modeling of the solar corona during Whole Sun Month , 1999 .

[83]  L. Burlaga,et al.  Compound streams, magnetic clouds, and major geomagnetic storms , 1987 .

[84]  Christopher T. Russell,et al.  Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections , 1999 .

[85]  R. Moore,et al.  The filament eruption in the 3B flare of July 29, 1973 - Onset and magnetic field configuration , 1980 .

[86]  A. Mavretic,et al.  SWE, a comprehensive plasma instrument for the WIND spacecraft , 1995 .

[87]  Adrian Grocott,et al.  Space- and ground-based investigations of solar wind–magnetosphere–ionosphere coupling , 2006 .

[88]  G. Siscoe,et al.  Ways in which ICME sheaths differ from magnetosheaths , 2008 .

[89]  Dusan Odstrcil,et al.  Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures , 2005 .

[90]  H. Schneiderman,et al.  Nuclear Transplantation in Drosophila melanogaster , 1971, Nature.

[91]  K. Ogilvie,et al.  The wind spacecraft and its early scientific results , 1997 .

[92]  G. Bourgois,et al.  Measurements of the solar wind velocity with EISCAT , 1985 .

[93]  Benoît Hubert,et al.  Influences on the radius of the auroral oval , 2009 .

[94]  E. Aguilar-Rodriguez,et al.  Speed evolution of fast CME/shocks with SOHO/LASCO, WIND/WAVES, IPS and in-situ WIND data: analysis of kilometric type-II emissions , 2009 .

[95]  J. Markkanen,et al.  EISCAT measurements of interplanetary scintillation , 1996 .

[96]  G. Siscoe,et al.  Distributed two‐dimensional region 1 and Region 2 currents: Model results and data comparisons , 1991 .

[97]  B. Barraclough,et al.  Ulysses solar wind plasma observations at high latitudes , 1996 .

[98]  D. Schnack,et al.  Magnetohydrodynamic modeling of the global solar corona , 1999 .

[99]  V. Abramenko,et al.  Modeling of a linear force-free magnetic field in a bounded domain , 1996 .

[100]  A. Buffington,et al.  THREE-DIMENSIONAL RECONSTRUCTIONS AND MASS DETERMINATION OF THE 2008 JUNE 2 LASCO CORONAL MASS EJECTION USING STELab INTERPLANETARY SCINTILLATION OBSERVATIONS , 2010 .

[101]  N. Sheeley,et al.  Energetic interplanetary shocks, radio emission, and coronal mass ejections , 1987 .

[102]  M. Freeman,et al.  The interaction of a magnetic cloud with the Earth: Ionospheric convection in the northern and southern hemispheres for a wide range of quasi‐steady interplanetary magnetic field conditions , 1993 .

[103]  Norman F. Ness,et al.  The ACE Magnetic Fields Experiment , 1998 .

[104]  Gordon J. Hurford,et al.  High-Energy Solar Spectroscopic Imager (HESSI) , 1996, Optics & Photonics.

[105]  H. W. Kroehl,et al.  What is a geomagnetic storm , 1994 .

[106]  L. Ofman,et al.  Cone model for halo CMEs: Application to space weather forecasting , 2004 .

[107]  Martin A. Davis,et al.  The NOAA Goes-12 Solar X-Ray Imager (SXI) 1. Instrument, Operations, and Data , 2005 .

[108]  L. Burlaga,et al.  Magnetic field structure of interplanetary magnetic clouds at 1 AU , 1990 .

[109]  Jay A. Bookbinder,et al.  The TRACE Mission , 1995 .

[110]  E. Hildner,et al.  The NOAA Goes-12 Solar X-Ray Imager (SXI) 2. Performance , 2001 .

[111]  H. Hudson,et al.  Sigmoidal morphology and eruptive solar activity , 1999 .

[112]  S. Bruinsma,et al.  From the Sun to the Earth : impact of the 27-28 May 2003 solar events on the magnetosphere, ionosphere and thermosphere , 2006 .

[113]  Hideaki Kawano,et al.  The GEOTAIL Magnetic Field Experiment. , 1994 .

[114]  G. Siscoe,et al.  Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions , 2005 .

[115]  M. W. Dunlop,et al.  The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results , 2001 .

[116]  Gary D. Christian,et al.  Solar and space weather radiophysics : current status and future developments , 2004 .

[117]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .

[118]  Christine Jordan,et al.  The solar eruption of 13 May 2005: EISCAT and MERLIN observations of a coronal radio burst , 2006 .

[119]  P. K. Manoharan,et al.  Radial Evolution and Turbulence Characteristics of a Coronal Mass Ejection , 2000, The Astrophysical Journal.

[120]  J. Qiu,et al.  SUNSPOT ROTATION, FLARE ENERGETICS, AND FLUX ROPE HELICITY: THE ERUPTIVE FLARE ON 2005 MAY 13 , 2009 .

[121]  Roberto Lionello,et al.  MHD Modeling of the Solar Corona and Inner Heliosphere: Comparison with Observations , 2013 .

[122]  Kenneth R. Lang,et al.  The Cambridge Encyclopedia of the Sun , 2001 .

[123]  Louis J. Lanzerotti,et al.  Electron, Proton, and Alpha Monitor on the Advanced Composition Explorer spacecraft , 1998 .

[124]  N. Kleimenova,et al.  Geomagnetic pulsations and magnetic disturbances during the initial phase of a strong magnetic storm of May 15, 2005 , 2007 .

[125]  A. G. McNamara,et al.  Canopus — A ground-based instrument array for remote sensing the high latitude ionosphere during the ISTP/GGS program , 1995 .

[126]  T. Sanderson,et al.  Tracing the topology of the October 18–20, 1995, magnetic cloud with ∼0.1–10² keV electrons , 1997 .

[127]  Bernard V. Jackson,et al.  The Solar Mass Ejection Imager (Smei) , 2003 .

[128]  J. Wanliss,et al.  High-resolution global storm index: Dst versus SYM-H , 2006 .

[129]  P. Démoulin A review of the quantitative links between CMEs and magnetic clouds , 2008 .

[130]  T. Ohmi,et al.  Time‐dependent tomography of hemispheric features using interplanetary scintillation (IPS) remote‐sensing observations , 2003 .

[131]  Gudmund Wannberg,et al.  The EISCAT Svalbard radar: A case study in modern incoherent scatter radar system design , 1997 .

[132]  R. Harrison,et al.  The relationship between EUV dimming and coronal mass ejections I. Statistical study and probability model , 2008 .

[133]  L. de Arcangelis,et al.  Different triggering mechanisms for solar flares and coronal mass ejections , 2008 .

[134]  V. Angelopoulos,et al.  Substorm expansion triggered by a sudden impulse front propagating from the dayside magnetopause , 2009 .

[135]  M. F. Thomsen,et al.  Magnetospheric plasma analyzer for spacecraft with constrained resources , 1993 .

[136]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO) , 1995 .

[137]  John Scherrer,et al.  The IMAGE Observatory , 2000 .

[138]  Mario M. Bisi,et al.  Combined STELab, EISCAT, ESR, and MERLIN IPS observations of the solar wind , 2007, SPIE Optical Engineering + Applications.

[139]  M. Hairston,et al.  Ring current and the magnetosphere‐ionosphere coupling during the superstorm of 20 November 2003 , 2005 .

[140]  M. Kojima,et al.  Solar cycle evolution of solar wind speed structure between 1973 and 1985 observed with the interplanetary scintillation method , 1987 .

[141]  B. Rickett IPS OBSERVATIONS OF THE SOLAR WIND VELOCITY AND MICROSCALE DENSITY IRREGULARITIES IN THE INNER SOLAR WIND , 1992 .

[142]  Jie Zhang,et al.  Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005 , 2007 .

[143]  Jeng-Hwa Yee,et al.  Overview of TIMED , 1999, Optics & Photonics.

[144]  Atsuhiro Nishida,et al.  The Geotail Mission , 1994 .

[145]  W. A. Coles,et al.  Analysis of three-station interplanetary scintillation , 1972 .

[146]  Bernard V. Jackson,et al.  Preliminary three‐dimensional analysis of the heliospheric response to the 28 October 2003 CME using SMEI white‐light observations , 2006 .

[147]  M. Bisi,et al.  Interplanetary scintillation studies of the large-scale structure of the solar wind , 2006 .

[148]  R. Harrison Soho observations relating to the association between flares and coronal mass ejections , 2003 .

[149]  T. Ivanova,et al.  Peculiarities of the outer radiation belt dynamics during the strong magnetic storm of May 15, 2005 , 2007 .

[150]  P. J. Williams,et al.  EISCAT measurements of the solar wind , 1996 .

[151]  A Method for Separating Coronal Mass Ejections from the Quiescent Corona , 2010 .

[152]  V. Bothmer,et al.  Eruptive prominences as sources of magnetic clouds in the solar wind , 1994 .

[153]  Masahisa Sugiura,et al.  Auroral electrojet activity index AE and its universal time variations. , 1966 .

[154]  H. R. Middleton,et al.  The Solar Eruption of 2005 May 13 and Its Effects: Long-Baseline Interplanetary Scintillation Observations of the Earth-Directed Coronal Mass Ejection , 2008 .

[155]  C. Russell,et al.  The true dimensions of interplanetary coronal mass ejections , 2002 .

[156]  M. M. Bisi,et al.  Interaction between coronal mass ejections and the solar wind , 2007 .

[157]  N. Gopalswamy,et al.  A universal characteristic of type II radio bursts , 2005 .

[158]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[159]  T. T. von Rosenvinge,et al.  The advanced composition explorer , 1988 .

[160]  J. F. Mckenzie,et al.  Differential ion streaming in the solar wind as an equilibrium state , 2005 .

[161]  Jie Zhang,et al.  Correction to “Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005” , 2007 .

[162]  Christine Jordan,et al.  Off-radial flow of the solar wind from EISCAT and MERLIN IPS observations , 2006 .

[163]  J. Gosling,et al.  Ulysses' rapid crossing of the polar coronal hole boundary , 1998 .