Electropolymerization of Bithienyl-appended Cerium(III) Triple Decker Porphyrin Complex

A cerium(III) triple decker porphyrin complex bearing bithienyl substituents (1) at the peripheral meso-positions was synthesized. Electrochemical polymerization of the triple decker porphyrin gave a unique polymer film on the ITO electrode surface without decomposition.

[1]  Masayuki Takeuchi,et al.  Allosteric binding of an Ag+ ion to cerium(IV) bis-porphyrinates enhances the rotational activity of porphyrin ligands. , 2002, Chemistry.

[2]  M. Ikeda,et al.  First successful molecular design of an artificial Lewis oligosaccharide binding system utilizing positive homotropic allosterism. , 2001, Journal of the American Chemical Society.

[3]  M. Ikeda,et al.  Molecular design of artificial molecular and ion recognition systems with allosteric guest responses. , 2001, Accounts of chemical research.

[4]  J. Lindsey,et al.  Investigation of rational syntheses of heteroleptic porphyrinic lanthanide (europium, cerium) triple-decker sandwich complexes. , 2001, Inorganic chemistry.

[5]  K. Hanabusa,et al.  Elongation of the pi-system of phthalocyanines by introduction of thienyl substituents at the peripheral beta positions. Synthesis and characterization. , 2001, The Journal of organic chemistry.

[6]  M. Ikeda,et al.  Positive allosteric systems designed on dynamic supramolecular scaffolds: toward switching and amplification of guest affinity and selectivity. , 2001, Accounts of chemical research.

[7]  M. O. Wolf Transition‐Metal–Polythiophene Hybrid Materials , 2001 .

[8]  Masayuki Takeuchi,et al.  Novel Oligosaccharide Binding to the Cerium(IV) Bis(porphyrinate) Double Decker: Effective Amplification of a Binding Signal through Positive Homotropic Allosterism. , 2000, Angewandte Chemie.

[9]  M. Ikeda,et al.  Strong Positive Allosterism which Appears in Molecular Recognition with Cerium(IV) Double Decker Porphyrins: Correlation between the Number of Binding Sites and Hill Coefficients , 2000 .

[10]  Takuzo Aida,et al.  Metal Bisporphyrinate Double-Decker Complexes as Redox-Responsive Rotating Modules. Studies on Ligand Rotation Activities of the Reduced and Oxidized Forms Using Chirality as a Probe , 2000 .

[11]  M. Ikeda,et al.  Allosteric silver(I) ion binding with peripheral pi clefts of a Ce(IV) double decker porphyrin. , 2000, Organic letters.

[12]  M. O. Wolf,et al.  Electropolymerization of Oligothienylferrocene Complexes , 2000 .

[13]  N. Kobayashi,et al.  Synthesis, Spectroscopy, Electrochemistry, and Mesomorphism of Triple-Decker Porphyrins Consisting of Two Cerium Ions and Three 5, 15-Diarylporphyrins , 1999 .

[14]  T. Swager,et al.  POLYTHIOPHENE HYBRIDS OF TRANSITION-METAL BIS(SALICYLIDENIMINE)S : CORRELATION BETWEEN STRUCTURE AND ELECTRONIC PROPERTIES , 1999 .

[15]  M. Ikeda,et al.  Ring rotation controversy in cerium(IV) bis(tetraarylporphyrinate) double deckers: HPLC evidence for the question to rotate or not to rotate , 1998 .

[16]  T. Swager,et al.  Electroactivity Enhancement by Redox Matching in Cobalt Salen–Based Conducting Polymers , 1998 .

[17]  Masayuki Takeuchi,et al.  A Strong Positive Allosteric Effect in the Molecular Recognition of Dicarboxylic Acids by a Cerium(IV) Bis[tetrakis(4-pyridyl)porphyrinate] Double Decker. , 1998, Angewandte Chemie.

[18]  Jianzhuang Jiang,et al.  Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes , 1998 .

[19]  T. Stümpfig,et al.  ANTHRYLOLIGOTHIENYLPORPHYRINS : ENERGY TRANSFER AND LIGHT-HARVESTING SYSTEMS , 1998 .

[20]  J. Michl,et al.  The organometallic ‘molecular tinkertoy’ approach to planar grid polymers , 1997 .

[21]  T. Shimidzu Porphyrin arrays connected with molecular wire , 1996 .

[22]  H. C. Wolf,et al.  Synthesis and Energy Transfer Properties of Terminally Substituted Oligothiophenes , 1995 .

[23]  H. Segawa,et al.  Approaches to conducting polymer devices with nano-structure: Electrochemical construction of one-dimensional and two-dimensional porphyrin-oligothiophene co-polymers , 1995 .

[24]  J. Roncali Conjugated poly(thiophenes): synthesis, functionalization, and applications , 1992 .

[25]  J. Fischer,et al.  Cerium(IV) bis(octaethylporphyrinate) and dicerium(III) tris(octaethylporphyrinate): parents of a new family of lanthanoid double-decker and triple-decker molecules , 1986 .

[26]  J. Lindsey,et al.  Studies related to the design and synthesis of a molecular octal counter , 2001 .

[27]  Richard D. McCullough,et al.  THE CHEMISTRY OF CONDUCTING POLYTHIOPHENES , 1998 .

[28]  A. Deronzier,et al.  POLYPYRROLE FILMS CONTAINING METAL COMPLEXES : SYNTHESES AND APPLICATIONS , 1996 .