Biological function made crystal clear - annotation of hypothetical proteins via structural genomics.

[1]  C A Orengo,et al.  Genome analysis: Assigning protein coding regions to three‐dimensional structures , 1999 .

[2]  D. Eisenberg,et al.  A combined algorithm for genome-wide prediction of protein function , 1999, Nature.

[3]  H N Moseley,et al.  Automated analysis of NMR assignments and structures for proteins. , 1999, Current opinion in structural biology.

[4]  K. Reich,et al.  Genome Scanning in Haemophilus influenzae for Identification of Essential Genes , 1999, Journal of bacteriology.

[5]  Yunje Cho,et al.  Structure-based identification of a novel NTPase from Methanococcus jannaschii , 1999, Nature Structural Biology.

[6]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[7]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[8]  A. McPherson Crystallization of Biological Macromolecules , 1999 .

[9]  P. D. Stewart,et al.  Practical experimental design techniques for automatic and manual protein crystallization , 1999 .

[10]  W. Braun,et al.  Automated 2D NOESY assignment and structure calculation of Crambin(S22/I25) with the self-correcting distance geometry based NOAH/DIAMOD programs. , 1999, Journal of magnetic resonance.

[11]  S. Kim,et al.  Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Manuel Peitsch,et al.  A genome-based approach for the identification of essential bacterial genes , 1998, Nature Biotechnology.

[13]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[14]  J. Mekalanos,et al.  Systematic identification of essential genes by in vitro mariner mutagenesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Suzanne Fortier,et al.  Direct methods for solving macromolecular structures , 1998 .

[16]  Werner Braun,et al.  Automated combined assignment of NOESY spectra and three-dimensional protein structure determination , 1997, Journal of biomolecular NMR.

[17]  G. Marius Clore,et al.  Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution , 1997, Nature Structural Biology.

[18]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[19]  A. Valencia,et al.  Correlated mutations contain information about protein-protein interaction. , 1997, Journal of molecular biology.

[20]  G. Montelione,et al.  Automated analysis of protein NMR assignments using methods from artificial intelligence. , 1997, Journal of molecular biology.

[21]  H Oschkinat,et al.  Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. , 1997, Journal of molecular biology.

[22]  M. Swindells,et al.  Protein clefts in molecular recognition and function. , 1996, Protein science : a publication of the Protein Society.

[23]  E. Mitchell,et al.  Glycerol concentrations required for cryoprotection of 50 typical protein crystallization solutions , 1996 .

[24]  T. M. Schuster,et al.  New revolutions in the evolution of analytical ultracentrifugation. , 1996, Current opinion in structural biology.

[25]  J M Thornton,et al.  Derivation of 3D coordinate templates for searching structural databases: Application to ser‐His‐Asp catalytic triads in the serine proteinases and lipases , 1996, Protein science : a publication of the Protein Society.

[26]  Gary L. Gilliland,et al.  The Biological Macromolecule Crystallization Database and NASA Protein Crystal Growth Archive , 1996, Journal of research of the National Institute of Standards and Technology.

[27]  P. Hensley Defining the structure and stability of macromolecular assemblies in solution: the re-emergence of analytical ultracentrifugation as a practical tool. , 1996, Structure.

[28]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[29]  J. Cherfils,et al.  Molecular docking programs successfully predict the binding of a β-lactamase inhibitory protein to TEM-1 β-lactamase , 1996, Nature Structural Biology.

[30]  Amos Bairoch,et al.  The PROSITE database, its status in 1995 , 1996, Nucleic Acids Res..

[31]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence data bank and its new supplement TREMBL , 1996, Nucleic Acids Res..

[32]  R. F. Smith,et al.  BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results. , 1995, Genome research.

[33]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[34]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[35]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[36]  J M Thornton,et al.  Protein-protein interactions: a review of protein dimer structures. , 1995, Progress in biophysics and molecular biology.

[37]  M Karplus,et al.  HOOK: A program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site , 1994, Proteins.

[38]  A. Ferré-D’Amaré,et al.  Use of dynamic light scattering to assess crystallizability of macromolecules and macromolecular assemblies. , 1994, Structure.

[39]  D. Wishart,et al.  The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data , 1994, Journal of biomolecular NMR.

[40]  Chris Sander,et al.  GeneQuiz: A Workbench for Sequence Analysis , 1994, ISMB.

[41]  I. Kuntz,et al.  Matching chemistry and shape in molecular docking. , 1993, Protein engineering.

[42]  I. Kuntz Structure-Based Strategies for Drug Design and Discovery , 1992, Science.

[43]  Sung-Hou Kim,et al.  Sparse matrix sampling: a screening method for crystallization of proteins , 1991 .

[44]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[45]  J. Tomb,et al.  Genetic systems in Haemophilus influenzae. , 1991, Methods in enzymology.

[46]  F. Studier,et al.  Use of T7 RNA polymerase to direct expression of cloned genes. , 1990, Methods in enzymology.

[47]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[48]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.

[49]  J. Brosius,et al.  "ATG vectors' for regulated high-level expression of cloned genes in Escherichia coli. , 1985, Gene.

[50]  G. Bricogne Geometric sources of redundancy in intensity data and their use for phase determination , 1974 .