Crop classification using multiconfiguration C-band SAR data

This paper reports on an investigation aimed at evaluating the performance of a neural-network based crop classification technique, which makes use of backscattering coefficients measured in different C-band synthetic aperture radar (SAR) configurations (multipolarization/multitemporal). To this end, C-band AirSAR and European Remote Sensing Satellite (ERS) data collected on the Flevoland site, extracted from the European RAdar-Optical Research Assemblage (ERA-ORA) library, have been used. The results obtained in classifying seven types of crops are discussed on the basis of the computed confusion matrices. The effect of increasing the number of polarizations and/or measurements dates are discussed and a scheme of interyear dynamic classification of five crop types is considered.

[1]  Dirk H. Hoekman,et al.  Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon , 2000, IEEE Trans. Geosci. Remote. Sens..

[2]  Yiu-Fai Wong,et al.  A new clustering algorithm applicable to multispectral and polarimetric SAR images , 1993, IEEE Trans. Geosci. Remote. Sens..

[3]  Maurice Borgeaud,et al.  Interpreting ERS SAR signatures of agricultural crops in Flevoland, 1993-1996 , 2000, IEEE Trans. Geosci. Remote. Sens..

[4]  Simonetta Paloscia,et al.  The potential of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass , 1997, IEEE Trans. Geosci. Remote. Sens..

[5]  Henning Skriver,et al.  Multitemporal C- and L-band polarimetric signatures of crops , 1999, IEEE Trans. Geosci. Remote. Sens..

[6]  Jon Atli Benediktsson,et al.  Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[7]  Yoshio Inoue,et al.  Ku- and C-band SAR for discriminating agricultural crop and soil conditions , 1998, IEEE Trans. Geosci. Remote. Sens..

[8]  B. Bouman,et al.  Multi-temporal, multi-frequency radar measurements of agricultural crops during the Agriscatt-88 campaign in The Netherlands. , 1993 .

[9]  Kun-Shan Chen,et al.  A dynamic learning neural network for remote sensing applications , 1994, IEEE Trans. Geosci. Remote. Sens..

[10]  J. Villasenor,et al.  On the use of multi-frequency and polarimetric radar backscatter features for classification of agricultural crops , 1994 .

[11]  Xavier Blaes,et al.  Operational control with remote sensing of area-based subsidies in the framework of the common agricultural policy : what role for the SAR sensors ? , 2002 .

[12]  Eric Pottier,et al.  Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[13]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[14]  Kun-Shan Chen,et al.  Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network , 1996, IEEE Trans. Geosci. Remote. Sens..

[15]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[16]  Paolo Ferrazzoli,et al.  SAR for agriculture: advances, problems and prospects , 2002 .

[17]  Thuy Le Toan,et al.  Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results , 1997, IEEE Trans. Geosci. Remote. Sens..

[18]  Paolo Ferrazzoli,et al.  Experimental and model investigation on radar classification capability , 1999, IEEE Trans. Geosci. Remote. Sens..