Unequal Error Protection Techniques Based onWyner-Ziv Coding

Compressed video is very sensitive to channel errors. A few bit losses can stop the entire decoding process. Therefore, protecting compressed video is always necessary for reliable visual communications. Utilizing unequal error protection schemes that assign different protection levels to the different elements in a compressed video stream is an efficient and effective way to combat channel errors. Three such schemes, based on Wyner-Ziv coding, are described herein. These schemes independently provide different protection levels to motion information and the transform coefficients produced by an H.264/AVC encoder. One method adapts the protection levels to the content of each frame, while another utilizes feedback regarding the latest channel packet loss rate to adjust the protection levels. All three methods demonstrate superior error resilience to using equal error protection in the face of packet losses.

[1]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[2]  Yao Wang,et al.  Error control and concealment for video communication: a review , 1998, Proc. IEEE.

[3]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[4]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[5]  Yiwei Thomas Hou,et al.  An end-to-end architecture for MPEG-4 video streaming over the Internet , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[6]  Yiwei Thomas Hou,et al.  MPEG4 compressed video over the Internet , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[7]  Bernd Girod,et al.  Analysis of video transmission over lossy channels , 2000, IEEE Journal on Selected Areas in Communications.

[8]  Iain E. G. Richardson,et al.  H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia , 2003 .

[9]  Rui Zhang,et al.  Wyner-Ziv coding for video: applications to compression and error resilience , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[10]  Stephan Wenger,et al.  H.264/AVC over IP , 2003, IEEE Trans. Circuits Syst. Video Technol..

[11]  Miska M. Hannuksela,et al.  H.264/AVC in wireless environments , 2003, IEEE Trans. Circuits Syst. Video Technol..

[12]  Ajay Luthra,et al.  Overview of the H.264/AVC video coding standard , 2003, IEEE Trans. Circuits Syst. Video Technol..

[13]  Bernd Girod,et al.  Analysis of packet loss for compressed video: does burst-length matter? , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[14]  Mathias Johanson,et al.  Adaptive Forward Error Correction for Real-time Internet Video , 2003 .

[15]  Bernd Girod,et al.  Systematic lossy forward error protection for video waveforms , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[16]  Shantanu Rane,et al.  ANALYSIS OF ERROR-RESILIENT VIDEO TRANSMISSION BASED ON SYSTEMATIC SOURCE-CHANNEL CODING , 2004 .

[17]  Narendra Ahuja,et al.  Wyner-Ziv coding of video: an error-resilient compression framework , 2004, IEEE Transactions on Multimedia.

[18]  B. Girod,et al.  Systematic lossy forward error protection for error-resilient digital video broadcasting - a Wyner-Ziv coding approach , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[19]  Kannan Ramchandran,et al.  ROBUST VIDEO TRANSMISSION OVER A LOSSY NETWORK USING A DISTRIBUTED SOURCE CODED AUXILIARY CHANNEL , 2004 .

[20]  Bernd Girod,et al.  Systematic lossy forward error protection for error-resilient digital video broadcasting , 2004, IS&T/SPIE Electronic Imaging.

[21]  Bernd Girod,et al.  Error-resilient video transmission using multiple embedded Wyner-Ziv descriptions , 2005, IEEE International Conference on Image Processing 2005.

[22]  Bernd Girod,et al.  Distributed Video Coding , 2005, Proceedings of the IEEE.

[23]  Bernd Girod,et al.  Systematic lossy error protection versus layered coding with unequal error protection , 2005, IS&T/SPIE Electronic Imaging.

[24]  Zixiang Xiong,et al.  Layered Wyner-Ziv video coding for transmission over unreliable channels , 2006 .

[25]  Jörg Ott,et al.  Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF) , 2006, RFC.

[26]  Shantanu Rane,et al.  Systematic lossy error protection of video based on H.264/AVC redundant slices , 2006, Electronic Imaging.

[27]  Vinod M. Prabhakaran,et al.  Syndrome-Based Robust Video Transmission Over Networks with Bursty Losses , 2006, 2006 International Conference on Image Processing.

[28]  B. Girod,et al.  Modeling and Optimization of a Systematic Lossy Error Protection System based on H . 264 / AVC Redundant Slices ⋆ , 2006 .

[29]  Pierpaolo Baccichet,et al.  Systematic Lossy Error Protection based on H.264/AVC redundant slices and flexible macroblock ordering , 2006 .

[30]  Edward J. Delp,et al.  Unequal error protection using Wyner-Ziv coding for error resilience , 2007, Electronic Imaging.

[31]  Bernd Girod,et al.  Video streaming over wireless networks , 2007, 2007 15th European Signal Processing Conference.

[32]  Kannan Ramchandran,et al.  PRISM: A Video Coding Paradigm With Motion Estimation at the Decoder , 2007, IEEE Transactions on Image Processing.

[33]  Edward J. Delp,et al.  Feedback-aided error resilience technique based on Wyner-Ziv coding , 2008, Electronic Imaging.

[34]  Edward J. Delp,et al.  Feedback aided content adaptive unequal error protection based on Wyner-Ziv coding , 2009, 2009 Picture Coding Symposium.