Compact difference method for solving the fractional reaction–subdiffusion equation with Neumann boundary value condition
暂无分享,去创建一个
[1] Fawang Liu,et al. Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation , 2008, Appl. Math. Comput..
[2] M. Saxton,et al. Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. , 2001, Biophysical journal.
[3] T. Kaczorek,et al. Fractional Differential Equations , 2015 .
[4] Fawang Liu,et al. New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..
[5] Xuan Zhao,et al. Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions , 2013, J. Comput. Phys..
[6] Fawang Liu,et al. A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..
[7] K. B. Oldham,et al. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .
[8] Zhi-Zhong Sun,et al. Numerical Algorithm With High Spatial Accuracy for the Fractional Diffusion-Wave Equation With Neumann Boundary Conditions , 2013, J. Sci. Comput..
[9] Santos B. Yuste,et al. Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..
[10] M. Meerschaert,et al. Finite difference methods for two-dimensional fractional dispersion equation , 2006 .
[11] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[12] Roberto Garrappa,et al. Generalized exponential time differencing methods for fractional order problems , 2011, Comput. Math. Appl..
[13] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[14] Santos B. Yuste,et al. On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.
[15] Changpin Li,et al. Mixed spline function method for reaction-subdiffusion equations , 2013, J. Comput. Phys..
[16] Wenjia Wang,et al. A Compact Difference Scheme for Time Fractional Diffusion Equation with Neumann Boundary Conditions , 2012, AsiaSim.
[17] Raoul R. Nigmatullin,et al. Fractional integral and its physical interpretation , 1992 .
[18] Zhi-Zhong Sun,et al. A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..
[19] Yangquan Chen,et al. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion , 2011, Comput. Math. Appl..
[20] Mingrong Cui,et al. Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..
[21] Zhi-Zhong Sun,et al. Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..
[22] Santos B. Yuste,et al. An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..
[23] B. Henry,et al. The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .
[24] Fawang Liu,et al. Stability and convergence of an implicit numerical method for the non-linear fractional reaction–subdiffusion process , 2009 .
[25] Xuan Zhao,et al. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..
[26] Mingrong Cui,et al. Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..