Compact difference method for solving the fractional reaction–subdiffusion equation with Neumann boundary value condition

In this paper, we derive a high-order compact finite difference scheme for solving the reaction–subdiffusion equation with Neumann boundary value condition. The L1 method is used to approximate the temporal Caputo derivative, and the compact difference operator is applied for spatial discretization. We prove that the compact finite difference method is unconditionally stable and convergent with order O(τ2−α+h4) in L2 norm, where τ, α, and h are the temporal step size, the order of time fractional derivative and the spatial step size, respectively. Finally, some numerical experiments are carried out to show the effectiveness of the proposed difference scheme.

[1]  Fawang Liu,et al.  Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation , 2008, Appl. Math. Comput..

[2]  M. Saxton,et al.  Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. , 2001, Biophysical journal.

[3]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[4]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[5]  Xuan Zhao,et al.  Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions , 2013, J. Comput. Phys..

[6]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[7]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[8]  Zhi-Zhong Sun,et al.  Numerical Algorithm With High Spatial Accuracy for the Fractional Diffusion-Wave Equation With Neumann Boundary Conditions , 2013, J. Sci. Comput..

[9]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[10]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[11]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[12]  Roberto Garrappa,et al.  Generalized exponential time differencing methods for fractional order problems , 2011, Comput. Math. Appl..

[13]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[14]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[15]  Changpin Li,et al.  Mixed spline function method for reaction-subdiffusion equations , 2013, J. Comput. Phys..

[16]  Wenjia Wang,et al.  A Compact Difference Scheme for Time Fractional Diffusion Equation with Neumann Boundary Conditions , 2012, AsiaSim.

[17]  Raoul R. Nigmatullin,et al.  Fractional integral and its physical interpretation , 1992 .

[18]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[19]  Yangquan Chen,et al.  Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion , 2011, Comput. Math. Appl..

[20]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[21]  Zhi-Zhong Sun,et al.  Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..

[22]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[23]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[24]  Fawang Liu,et al.  Stability and convergence of an implicit numerical method for the non-linear fractional reaction–subdiffusion process , 2009 .

[25]  Xuan Zhao,et al.  A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..

[26]  Mingrong Cui,et al.  Compact alternating direction implicit method for two-dimensional time fractional diffusion equation , 2012, J. Comput. Phys..