A class of semisymmetric graphs
暂无分享,去创建一个
[1] Steve Wilson,et al. A worthy family of semisymmetric graphs , 2003, Discret. Math..
[2] I. Bouwer. An Edge but not Vertex Transitive Cubic Graph* , 1968, Canadian Mathematical Bulletin.
[3] Dragan Marusic,et al. An infinite family of cubic edge- but not vertex-transitive graphs , 2004, Discret. Math..
[4] Mingyao Xu,et al. On semisymmetric cubic graphs of order 6p2 , 2004 .
[5] J. Dixon,et al. Permutation Groups , 1996 .
[6] A. White,et al. Permutation Groups and Combinatorial Structures: Groups and Graphs , 1979 .
[7] Lin Zhang,et al. An infinite family of semisymmetric graphs constructed from affine geometries , 2003, Eur. J. Comb..
[8] M. Conder,et al. A census of semisymmetric cubic graphs on up to 768 vertices , 2006 .
[9] Dragan Marusic,et al. Semisymmetric elementary abelian covers of the Möbius-Kantor graph , 2005, Discret. Math..
[10] D. Marusic,et al. An infinite family of biprimitive semisymmetric graphs , 1999 .
[11] B. Huppert. Endliche Gruppen I , 1967 .
[12] Dragan Marusic,et al. Semisymmetry of Generalized Folkman Graphs , 2001, Eur. J. Comb..
[13] H. Wielandt,et al. Finite Permutation Groups , 1964 .
[14] ˇ DraganMaruˇ. Bridging Semisymmetric and Half-Arc-Transitive Actions on Graphs , 2002 .
[15] Li Wang,et al. Semisymmetric graphs of order 2p3 , 2012, Eur. J. Comb..
[16] A. V. Ivanov,et al. On Edge but not Vertex Transitive Regular Graphs , 1987 .
[17] Felix Lazebnik,et al. An infinite series of regular edge‐ but not vertex‐transitive graphs , 2002, J. Graph Theory.
[18] J. Folkman. Regular line-symmetric graphs , 1967 .
[19] Yan-Quan Feng,et al. Cubic symmetric graphs of order a small number times a prime or a prime square , 2007, J. Comb. Theory, Ser. B.
[20] R. Guralnick. Subgroups of prime power index in a simple group , 1983 .
[21] Steve Wilson,et al. Tetravalent edge-transitive graphs of girth at most 4 , 2007, J. Comb. Theory, Ser. B.
[22] C. W. Parker,et al. Semisymmetric cubic graphs of twice odd order , 2004, Eur. J. Comb..
[23] D. Marusic,et al. Biprimitive Graphs of Smallest Order , 1999 .
[24] Ming-Yao Xu,et al. A classification of semisymmetric graphs of order 2pq , 2000 .
[25] Aleksander Malnič,et al. Cubic edge-transitive graphs of order 2p3 , 2004, Discret. Math..
[26] Dragan Marusic,et al. The edge-transitive but not vertex-transitive cubic graph on 112 vertices , 2005, J. Graph Theory.
[27] Aleksander Malnič,et al. On Cubic Graphs Admitting an Edge-Transitive Solvable Group , 2004 .