A class of semisymmetric graphs

A simple undirected graph is said to be semisymmetric if it is regular and edge-transitive but not vertex-transitive. Every semisymmetric graph is a bipartite graph with two parts of equal size. Let p be a prime. In this paper, a class of semisymmetric graphs of order 2 p 3 are determined. This work is a partial result for our long term goal to classify all semisymmetric graphs of order 2 p 3 .

[1]  Steve Wilson,et al.  A worthy family of semisymmetric graphs , 2003, Discret. Math..

[2]  I. Bouwer An Edge but not Vertex Transitive Cubic Graph* , 1968, Canadian Mathematical Bulletin.

[3]  Dragan Marusic,et al.  An infinite family of cubic edge- but not vertex-transitive graphs , 2004, Discret. Math..

[4]  Mingyao Xu,et al.  On semisymmetric cubic graphs of order 6p2 , 2004 .

[5]  J. Dixon,et al.  Permutation Groups , 1996 .

[6]  A. White,et al.  Permutation Groups and Combinatorial Structures: Groups and Graphs , 1979 .

[7]  Lin Zhang,et al.  An infinite family of semisymmetric graphs constructed from affine geometries , 2003, Eur. J. Comb..

[8]  M. Conder,et al.  A census of semisymmetric cubic graphs on up to 768 vertices , 2006 .

[9]  Dragan Marusic,et al.  Semisymmetric elementary abelian covers of the Möbius-Kantor graph , 2005, Discret. Math..

[10]  D. Marusic,et al.  An infinite family of biprimitive semisymmetric graphs , 1999 .

[11]  B. Huppert Endliche Gruppen I , 1967 .

[12]  Dragan Marusic,et al.  Semisymmetry of Generalized Folkman Graphs , 2001, Eur. J. Comb..

[13]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[14]  ˇ DraganMaruˇ Bridging Semisymmetric and Half-Arc-Transitive Actions on Graphs , 2002 .

[15]  Li Wang,et al.  Semisymmetric graphs of order 2p3 , 2012, Eur. J. Comb..

[16]  A. V. Ivanov,et al.  On Edge but not Vertex Transitive Regular Graphs , 1987 .

[17]  Felix Lazebnik,et al.  An infinite series of regular edge‐ but not vertex‐transitive graphs , 2002, J. Graph Theory.

[18]  J. Folkman Regular line-symmetric graphs , 1967 .

[19]  Yan-Quan Feng,et al.  Cubic symmetric graphs of order a small number times a prime or a prime square , 2007, J. Comb. Theory, Ser. B.

[20]  R. Guralnick Subgroups of prime power index in a simple group , 1983 .

[21]  Steve Wilson,et al.  Tetravalent edge-transitive graphs of girth at most 4 , 2007, J. Comb. Theory, Ser. B.

[22]  C. W. Parker,et al.  Semisymmetric cubic graphs of twice odd order , 2004, Eur. J. Comb..

[23]  D. Marusic,et al.  Biprimitive Graphs of Smallest Order , 1999 .

[24]  Ming-Yao Xu,et al.  A classification of semisymmetric graphs of order 2pq , 2000 .

[25]  Aleksander Malnič,et al.  Cubic edge-transitive graphs of order 2p3 , 2004, Discret. Math..

[26]  Dragan Marusic,et al.  The edge-transitive but not vertex-transitive cubic graph on 112 vertices , 2005, J. Graph Theory.

[27]  Aleksander Malnič,et al.  On Cubic Graphs Admitting an Edge-Transitive Solvable Group , 2004 .