Relationships between soil properties and species establishment in the restoration of mined soils in the Cerrado biome

Restoring the ecosystems of the Cerrado biome is challenging considering the diversity of phytophysiognomies present in the biome, some of which are composed of species from different strata (herbaceous, shrubby, and arboreal), which increases the complexity of restructuring the floristic composition. Other factors was involved, such as soil quality, which directly influences the success of restoration, water storage, and nutrients, the financial costs, and a slow ecological process, due to the adverse circumstances found in the area. be restored. The strong anthropogenic interventions by mining processes reduce dramatically the physical and nutritional composition of the soil. We studied two restoration areas in Paracatu, Brazil, to examine their edaphic conditions six years after mining activities ceased and relate them to the status of the restoration process. In 2009, a Cerrado restoration were established in an area previously explored for gravel extraction. Plants were sampled and identified in 11 transects along the planting lines. The diameter base (DB) and total height (HT) were measured. The physical/chemical quality of the soil substrate was determined using a collection of samples in open trenches at four types of points: Cerrado (TC); dead plant pits (TM); seedling pits having living individuals of the most abundant species (TT); and those of the second-most abundant species (TE). Cecropia pachystachya Trécul and Tapirira guianensis Aubl. were most abundant and demonstrated the potential to thrive in areas degraded by mining having low mortality rates and growth at relatively DB and HT. The physical quality indicators in the gravel pits were not limiting, indicating that substrate preparation was efficient in this regard. The organic matter content in TM, TT, and TE was low in comparison to that of TC, and the chemical conditions in the TE pit substrates were similar to those in TM pits, suggesting C. pachystachya is a species with good plasticity, whereas T. guianensis is present in pits with higher levels of phosphorus.

[1]  E. Pajuelo,et al.  Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms. , 2021, Journal of environmental sciences.

[2]  G. Durigan,et al.  Weed control, large seeds and deep roots: Drivers of success in direct seeding for savanna restoration , 2020 .

[3]  V. A. Forti,et al.  Techniques for seedling production of two native grasses: new perspectives for Brazilian Cerrado restoration , 2020, Restoration Ecology.

[4]  L. C. Garcia,et al.  Ecological restoration in Brazilian biomes: Identifying advances and gaps , 2020, Forest Ecology and Management.

[5]  M. S. Cravo,et al.  Interpretação dos resultados da análise do solo. , 2020 .

[6]  L. Bervoets,et al.  Invisible and ignored? Local perspectives on mercury in Congolese gold mining , 2019, Journal of Cleaner Production.

[7]  A. Błońska,et al.  Vegetation diversity on coal mine spoil heaps – how important is the texture of the soil substrate? , 2019, Biologia.

[8]  A. Bojanic,et al.  Innovation with Spatial Impact: Sustainable Development of the Brazilian Cerrado , 2019 .

[9]  E. Sano Land Use Expansion in the Brazilian Cerrado , 2019, Innovation with Spatial Impact: Sustainable Development of the Brazilian Cerrado.

[10]  F. López-Barrera,et al.  Active versus passive restoration: Recovery of cloud forest structure, diversity and soil condition in abandoned pastures , 2018, Ecological Engineering.

[11]  Alena Walmsley,et al.  Various effects of land tenure on soil biochemical parameters under organic and conventional farming − Implications for soil quality restoration , 2017 .

[12]  J. F. Ribeiro,et al.  “Cerrado” restoration by direct seeding: field establishment and initial growth of 75 trees, shrubs and grass species , 2017, Brazilian Journal of Botany.

[13]  Tiago Reis Dutra,et al.  FERTILIZANTE DE LIBERAÇÃO LENTA NO CRESCIMENTO E QUALIDADE DE MUDAS DE CANAFÍSTULA (Peltophorum dubium (Spreng.) Taub.) , 2017 .

[14]  Kuang Hongyu,et al.  Análise de Componentes Principais: Resumo Teórico, Aplicação e Interpretação , 2016 .

[15]  M. Benzaazoua,et al.  Valorization of Phosphate Waste Rocks and Sludge from the Moroccan Phosphate Mines: Challenges and Perspectives , 2016 .

[16]  G. Caione,et al.  CALCÁRIO LÍQUIDO E CALCÁRIO CONVENCIONAL NA CORREÇÃO DA ACIDEZ DO SOLO , 2015 .

[17]  M. Pereira,et al.  ATRIBUTOS QUÍMICOS E FÍSICOS DO SOLO, ESTOQUES DE CARBONO E NITROGÊNIO E FRAÇÕES HÚMICAS EM DIFERENTES FORMAÇÕES VEGETAIS , 2015 .

[18]  I. Pereira,et al.  Estrutura da vegetação colonizadora em ambiente degradado por extração de cascalho em Diamantina, MG , 2015 .

[19]  M. Pereira,et al.  Relação solo/vegetação em ambiente de cerrado sobre influência do grupo Urucuia , 2015 .

[20]  V. B. Yap,et al.  Comparing germination success and seedling traits between exotic and native pioneers: Cecropia pachystachya versus Macaranga gigantea , 2015, Plant Ecology.

[21]  R. P. Almeida,et al.  Indicadores da Qualidade do Substrato para Monitoramento de Áreas de Mineração Revegetadas , 2015 .

[22]  J. F. Ribeiro,et al.  Crescimento de espécies nativas em um plantio de recuperação de Cerrado sentido restrito no Distrito Federal, Brasil , 2015 .

[23]  Gileno Brito de Azevedo,et al.  Ciclagem e balanço de nutrientes no sistema solo-planta em um plantio de Eucalyptus sp., no Distrito Federal , 2014 .

[24]  R. Salomão,et al.  Dinâmica de reflorestamento em áreas de restauração após mineração em unidade de conservação na Amazônia , 2014 .

[25]  J. Stape,et al.  Köppen's climate classification map for Brazil , 2013 .

[26]  J. C. Budke,et al.  Eficiência de diferentes recipientes no desenvolvimento de mudas de Cedrela fissilis Vell. (Meliaceae) , 2013 .

[27]  G. Durigan,et al.  Critérios para indicação de espécies prioritárias para a restauração da vegetação de cerrado , 2013 .

[28]  R. Rodrigues,et al.  Avaliação e monitoramento de áreas em processo de restauração , 2013 .

[29]  Zigomar Menezes de Souza,et al.  Recuperação em área de empréstimo usada para construção de usina hidrelétrica , 2012 .

[30]  A. R. Silva,et al.  Acidez do solo e sua correção em palma de óleo , 2012 .

[31]  Marx Leandro Naves Silva,et al.  ATRIBUTOS FÍSICOS, QUÍMICOS E BIOLÓGICOS DO SOLO EM AMBIENTES DE VOÇOROCAS NO MUNICÍPIO DE LAVRAS - MG , 2011 .

[32]  A. P. Vitória,et al.  Leaf phenology and water potential of five arboreal species in gallery and montane forests in the Chapada Diamantina; Bahia; Brazil , 2011 .

[33]  Tiago Santos Telles,et al.  Revista Brasileira de Ciência do Solo , 2011 .

[34]  D. Rossatto,et al.  Al-hyperaccumulator Vochysiaceae from the Brazilian Cerrado store aluminum in their chloroplasts without apparent damage , 2011 .

[35]  A. C. Franco,et al.  Respostas fotossintéticas de plantas do cerrado nas estações seca e chuvosa , 2010 .

[36]  Andrea Mechi,et al.  Impactos ambientais da mineração no Estado de São Paulo , 2010 .

[37]  R. Corrêa,et al.  SUMMARY: QUALITY OF A REVEGETED MINE SPOIL IN THE FEDERAL DISRICT OF BRAZIL , 2010 .

[38]  Lucas C. R. Silva,et al.  Evolution of substrate quality of a mined area in the Brazilian Savanna after revegetation with Stylosanthes spp , 2010 .

[39]  M. Haridasan Nutritional adaptations of native plants of the cerrado biome in acid soils , 2008 .

[40]  L. F. C. Leite Matéria orgânica do solo. , 2004 .

[41]  Simey Thury Vieira Fisch,et al.  A cobertura vegetal e as características do solo em área de extração de areia , 2004 .