Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way

[1]  Michael S. Bessell,et al.  HIGH-RESOLUTION SPECTROSCOPIC STUDY OF EXTREMELY METAL-POOR STAR CANDIDATES FROM THE SKYMAPPER SURVEY , 2015, 1504.03344.

[2]  A. Udalski,et al.  OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment , 2015, 1504.05966.

[3]  J. Bovy galpy: A python LIBRARY FOR GALACTIC DYNAMICS , 2014, 1412.3451.

[4]  T. Beers,et al.  CARBON-ENHANCED METAL-POOR STAR FREQUENCIES IN THE GALAXY: CORRECTIONS FOR THE EFFECT OF EVOLUTIONARY STATUS ON CARBON ABUNDANCES , 2014, 1410.2223.

[5]  C. Prieto,et al.  The Gaia-ESO Survey: the most metal-poor stars in the Galactic bulge , 2014, 1409.7952.

[6]  A. Casey,et al.  THE BEST AND BRIGHTEST METAL-POOR STARS , 2014, 1409.4775.

[7]  A. Casey A Tale of Tidal Tails in the Milky Way , 2014, 1405.5968.

[8]  K. Nomoto,et al.  THE ORIGIN OF LOW [α/Fe] RATIOS IN EXTREMELY METAL-POOR STARS , 2014, 1403.1796.

[9]  Z. Magic,et al.  A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36−670839.3 , 2014, Nature.

[10]  V. Debattista,et al.  YOUNG STARS IN AN OLD BULGE: A NATURAL OUTCOME OF INTERNAL EVOLUTION IN THE MILKY WAY , 2014, 1401.0541.

[11]  A. Gould,et al.  AN ASYMMETRIC STREAMING MOTION IN THE GALACTIC BULGE X-SHAPED STRUCTURE REVEALED BY OGLE-III PROPER MOTIONS , 2013, 1304.6084.

[12]  T. Beers,et al.  VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY , 2013, 1301.1367.

[13]  T. Beers,et al.  THE MOST METAL-POOR STARS. I. DISCOVERY, DATA, AND ATMOSPHERIC PARAMETERS , 2012, 1208.2999.

[14]  T. Beers,et al.  THE MOST METAL-POOR STARS. II. CHEMICAL ABUNDANCES OF 190 METAL-POOR STARS INCLUDING 10 NEW STARS WITH [Fe/H] ⩽ −3.5,, , 2012, 1208.3003.

[15]  M. Asplund,et al.  Non-LTE line formation of Fe in late-type stars - II. 1D spectroscopic stellar parameters , 2012, 1207.2454.

[16]  A. Recio-Blanco,et al.  The AMBRE project: A new synthetic grid of high-resolution FGKM stellar spectra , 2012, 1205.2270.

[17]  R. Klessen,et al.  Formation and evolution of primordial protostellar systems , 2012, 1202.5552.

[18]  S. Lucatello,et al.  MOOG: LTE line analysis and spectrum synthesis , 2012 .

[19]  A. Robin,et al.  Stellar populations in the Milky Way bulge region: towards solving the Galactic bulge and bar shapes using 2MASS data , 2011, 1111.5744.

[20]  Vanessa Hill,et al.  An extremely primitive star in the Galactic halo , 2011, Nature.

[21]  M. Asplund,et al.  Non-LTE calculations for neutral Na in late-type stars using improved atomic data , 2011, 1102.2160.

[22]  J. Bland-Hawthorn,et al.  Pregalactic metal enrichment: The chemical signatures of the first stars , 2011, 1101.4024.

[23]  J. Tumlinson CHEMICAL EVOLUTION IN HIERARCHICAL MODELS OF COSMIC STRUCTURE. II. THE FORMATION OF THE MILKY WAY STELLAR HALO AND THE DISTRIBUTION OF THE OLDEST STARS , 2009, 0911.1786.

[24]  S. Ortolani,et al.  Chemical abundances of 11 bulge stars from high-resolution, near-IR spectra , 2009, 0910.0448.

[25]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[26]  D. Kawata,et al.  Mining the Galactic halo for very metal-poor stars , 2009, 0908.4279.

[27]  M. Asplund,et al.  Departures from LTE for neutral Li in late-type stars , 2009, 0906.0899.

[28]  N. Yoshida,et al.  The formation of the first stars and galaxies , 2009, Nature.

[29]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[30]  A. P. Oates,et al.  SkyMapper and the Southern Sky Survey , 2007, astro-ph/0702511.

[31]  P. Barklem Non-LTE Balmer line formation in late-type spectra: effects of atomic processes involving hydrogen atoms , 2007, astro-ph/0702222.

[32]  A. Frebel,et al.  Probing the formation of the first low‐mass stars with stellar archaeology , 2007, astro-ph/0701395.

[33]  T. Beers,et al.  The Frequency of Carbon-enhanced Metal-poor Stars in the Galaxy from the HERES Sample , 2006, astro-ph/0609730.

[34]  C. Flynn,et al.  Accurate fundamental parameters for lower main‐sequence stars , 2006, astro-ph/0608504.

[35]  Vladimir Churilov,et al.  Performance of AAOmega: the AAT multi-purpose fiber-fed spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.

[36]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[37]  P. Mazzali,et al.  Nucleosynthesis in black-hole-forming supernovae and extremely metal-poor stars , 2003, astro-ph/0306412.

[38]  Stephen A. Shectman,et al.  MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[39]  T. Beers,et al.  A stellar relic from the early Milky Way , 2002, Nature.

[40]  K. Nomoto,et al.  Nucleosynthesis of Zinc and Iron Peak Elements in Population III Type II Supernovae: Comparison with Abundances of Very Metal Poor Halo Stars , 2001, astro-ph/0103241.

[41]  P. Barklem,et al.  Self-broadening in Balmer line wing formation in stellar atmospheres , 2000, astro-ph/0010022.

[42]  G. Gilmore,et al.  Age and Metallicity Gradients in the Galactic Bulge , 1999, astro-ph/0002123.

[43]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[44]  L. Aller,et al.  The chemical composition of the sun. , 1976, Science.

[45]  Oskar Bengtz Chemical signatures of the first stars , 2017 .

[46]  J. Tumlinson Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 CARBON-ENHANCED METAL-POOR STARS, THE COSMIC MICROWAVE BACKGROUND, AND THE STELLAR IMF IN THE EARLY UNIVERSE , 2008 .

[47]  P. Mazzali,et al.  Nucleosynthesis in Black-Hole-Forming Supernovae , 2005 .

[48]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .