A Chebyshev Finite Difference Method For Solving A Class Of Optimal Control Problems

A new Chebyshev finite difference method for solving class of optimal control problem is proposed. The algorithm is based on Chebyshev approximations of the derivatives arising in system dynamics. In the performance index, we use Chebyshev approximations for integration. The numerical examples illustrate the robustness, accuracy and efficiency of the proposed technique.

[1]  Elsayed M. E. Elbarbary,et al.  Chebyshev finite difference approximation for the boundary value problems , 2003, Appl. Math. Comput..

[2]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[3]  Stephen E. Wright,et al.  Consistency of Primal-Dual Approximations for Convex Optimal Control Problems , 1995 .

[4]  W. Hager,et al.  Dual Approximations in Optimal Control , 1984 .

[5]  W. Hager Rates of Convergence for Discrete Approximations to Unconstrained Control Problems , 1976 .

[6]  Mamdouh M. El-Kady Numerical Solution for Large-Scale Systems with General Multiple Linear-Quadratic Structure , 2002, Int. J. Comput. Math..

[7]  Mark B. Milam,et al.  A new computational approach to real-time trajectory generation for constrained mechanical systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[8]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[9]  M. S. Salim,et al.  A Chebyshev approximation for solving optimal control problems , 1995 .

[10]  E. Polak An historical survey of computational methods in optimal control. , 1973 .

[11]  Elsayed M. E. Elbarbary Chebyshev finite difference method for the solution of boundary-layer equations , 2005, Appl. Math. Comput..

[12]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[13]  A. Dontchev Discrete approximations in optimal control , 1996 .

[14]  S. E. El-gendi,et al.  Chebyshev Solution of Differential, Integral and Integro-Differential Equations , 1969, Comput. J..

[15]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[16]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[17]  Jie Shen,et al.  Efficient Spectral-Galerkin Method II. Direct Solvers of Second- and Fourth-Order Equations Using Chebyshev Polynomials , 1995, SIAM J. Sci. Comput..

[18]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[19]  A. L. Herman,et al.  Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules , 1996 .

[20]  E. Polak,et al.  Consistent Approximations for Optimal Control Problems Based on Runge--Kutta Integration , 1996 .

[21]  S Gonzalez,et al.  Modified quasilinearization algorithm for optimal control problems with nondifferential constraints and general boundary conditions , 1986 .

[22]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[23]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[24]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .