A suggested role for mitochondria in Noonan syndrome.

[1]  M. Khaidakov,et al.  Mitochondrial dysfunction in a neural cell model of spinal muscular atrophy , 2009, Journal of neuroscience research.

[2]  B. Kalyanaraman,et al.  Role of nuclear-encoded subunit Vb in the assembly and stability of cytochrome c oxidase complex: implications in mitochondrial dysfunction and ROS production. , 2009, The Biochemical journal.

[3]  S. Vogt,et al.  Degenerative diseases, oxidative stress and cytochrome c oxidase function. , 2009, Trends in molecular medicine.

[4]  L. Samavati,et al.  Isolation of regulatory-competent, phosphorylated cytochrome C oxidase. , 2009, Methods in enzymology.

[5]  M. Hüttemann,et al.  Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease , 2008, Journal of bioenergetics and biomembranes.

[6]  E. Gontier,et al.  Localization of PTP-1B, SHP-2, and Src Exclusively in Rat Brain Mitochondria and Functional Consequences* , 2008, Journal of Biological Chemistry.

[7]  K. Marcus,et al.  Phosphorylation and Kinetics of Mammalian Cytochrome c Oxidase* , 2008, Molecular & Cellular Proteomics.

[8]  F. Lottspeich,et al.  Tumor Necrosis Factor α Inhibits Oxidative Phosphorylation through Tyrosine Phosphorylation at Subunit I of Cytochrome c Oxidase* , 2008, Journal of Biological Chemistry.

[9]  N. Morrice,et al.  Identification of serine phosphorylation in mitochondrial uncoupling protein 1. , 2008, Biochimica et biophysica acta.

[10]  M. Hüttemann,et al.  Mammalian liver cytochrome c is tyrosine-48 phosphorylated in vivo, inhibiting mitochondrial respiration. , 2008, Biochimica et biophysica acta.

[11]  L. Samavati,et al.  Regulation of mitochondrial oxidative phosphorylation through cell signaling. , 2007, Biochimica et biophysica acta.

[12]  V. Skulachev,et al.  A biochemical approach to the problem of aging: “Megaproject” on membrane-penetrating ions. The first results and prospects , 2007, Biochemistry (Moscow).

[13]  K. Maiese,et al.  The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. , 2007, Histology and histopathology.

[14]  E. Pagnotta,et al.  Biochemical phenotypes associated with the mitochondrial ATP6 gene mutations at nt8993. , 2007, Biochimica et biophysica acta.

[15]  J. Tauskela MitoQ--a mitochondria-targeted antioxidant. , 2007, IDrugs : the investigational drugs journal.

[16]  D. Galati,et al.  Site specific phosphorylation of cytochrome c oxidase subunits I, IVi1 and Vb in rabbit hearts subjected to ischemia/reperfusion , 2007, FEBS letters.

[17]  Li Li,et al.  Germline gain-of-function mutations in SOS1 cause Noonan syndrome , 2007, Nature Genetics.

[18]  L. Grossman,et al.  New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo. , 2006, Biochemistry.

[19]  Peter J. Belmont,et al.  Alterations in oxidative phosphorylation complex proteins in the hearts of transgenic mice that overexpress the p38 MAP kinase activator, MAP kinase kinase 6. , 2006, American journal of physiology. Heart and circulatory physiology.

[20]  Sheila M. Thomas,et al.  An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. , 2006, Developmental cell.

[21]  S. Srinivasan,et al.  Protein Kinase A-mediated Phosphorylation Modulates Cytochrome c Oxidase Function and Augments Hypoxia and Myocardial Ischemia-related Injury* , 2006, Journal of Biological Chemistry.

[22]  Mourad Ogbi,et al.  Protein kinase Cepsilon interacts with cytochrome c oxidase subunit IV and enhances cytochrome c oxidase activity in neonatal cardiac myocyte preconditioning. , 2006, The Biochemical journal.

[23]  Malcolm McGregor,et al.  Diverse Biochemical Properties of Shp2 Mutants , 2005, Journal of Biological Chemistry.

[24]  S. Ficarro,et al.  cAMP-dependent Tyrosine Phosphorylation of Subunit I Inhibits Cytochrome c Oxidase Activity* , 2005, Journal of Biological Chemistry.

[25]  J. Houštěk,et al.  Flow-cytometric monitoring of mitochondrial depolarisation: from fluorescence intensities to millivolts. , 2005, Journal of photochemistry and photobiology. B, Biology.

[26]  Y. Akao,et al.  Predominant expression of the src homology 2-containing tyrosine phosphatase protein SHP2 in vascular smooth muscle cells , 1997, Virchows Archiv.

[27]  W. Wurst,et al.  Essential Role for Mitochondrial Thioredoxin Reductase in Hematopoiesis, Heart Development, and Heart Function , 2004, Molecular and Cellular Biology.

[28]  J. Pohl,et al.  Cytochrome c oxidase subunit IV as a marker of protein kinase Cepsilon function in neonatal cardiac myocytes: implications for cytochrome c oxidase activity. , 2004, The Biochemical journal.

[29]  A. Stringaro,et al.  Tyrosine phosphatase activity in mitochondria: presence of Shp-2 phosphatase in mitochondria , 2004, Cellular and Molecular Life Sciences CMLS.

[30]  Corinne Silva,et al.  Phosphorylation of Y845 on the Epidermal Growth Factor Receptor Mediates Binding to the Mitochondrial Protein Cytochrome c Oxidase Subunit II , 2004, Molecular and Cellular Biology.

[31]  D. Gilliland,et al.  Mouse model of Noonan syndrome reveals cell type– and gene dosage–dependent effects of Ptpn11 mutation , 2004, Nature Medicine.

[32]  Zheng-Guo Cui,et al.  Signal transduction of p53-independent apoptotic pathway induced by hexavalent chromium in U937 cells. , 2004, Toxicology and applied pharmacology.

[33]  S. Yoshikawa,et al.  The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Ikeda-Saito,et al.  Redox-dependent modulation of aconitase activity in intact mitochondria. , 2003, Biochemistry.

[35]  B. Neel,et al.  Tyrosyl Phosphorylation of Shp2 Is Required for Normal ERK Activation in Response to Some, but Not All, Growth Factors* , 2003, Journal of Biological Chemistry.

[36]  Bernhard Kadenbach,et al.  Intrinsic and extrinsic uncoupling of oxidative phosphorylation. , 2003, Biochimica et biophysica acta.

[37]  Sakae Tanaka,et al.  Regulation of cytochrome c oxidase activity by c-Src in osteoclasts , 2003, The Journal of cell biology.

[38]  B. Neel,et al.  Receptor-Specific Regulation of Phosphatidylinositol 3′-Kinase Activation by the Protein Tyrosine Phosphatase Shp2 , 2002, Molecular and Cellular Biology.

[39]  A. Brunati,et al.  Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria. , 2002, Biochimica et biophysica acta.

[40]  R. Person,et al.  Involvement of Mitochondria and Other Free Radical Sources in Normal and Abnormal Fetal Development , 2002, Annals of the New York Academy of Sciences.

[41]  P. Pedersen,et al.  Signal transduction to mitochondrial ATP synthase: evidence that PDGF-dependent phosphorylation of the delta-subunit occurs in several cell lines, involves tyrosine, and is modulated by lysophosphatidic acid. , 2002, Mitochondrion.

[42]  Michael A. Patton,et al.  Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome , 2001, Nature Genetics.

[43]  Robin A. J. Smith,et al.  Selective Targeting of a Redox-active Ubiquinone to Mitochondria within Cells , 2001, The Journal of Biological Chemistry.

[44]  J. Houštěk,et al.  Activities of mitochondrial oxidative phosphorylation enzymes in cultured amniocytes. , 2000, Clinica chimica acta; international journal of clinical chemistry.

[45]  Shu-sen Liu,et al.  Cooperation of a “Reactive Oxygen Cycle” with The Q Cycle and The Proton Cycle in the Respiratory Chain—Superoxide Generating and Cycling Mechanisms in Mitochondria , 1999, Journal of bioenergetics and biomembranes.

[46]  Sheila M. Thomas,et al.  Regulation of Early Events in Integrin Signaling by Protein Tyrosine Phosphatase SHP-2 , 1999, Molecular and Cellular Biology.

[47]  C. Cartwright,et al.  The Shp-2 tyrosine phosphatase activates the Src tyrosine kinase by a non-enzymatic mechanism , 1999, Oncogene.

[48]  R. Person,et al.  Studies of the cellular distribution of superoxide dismutases in adult and fetal rat tissues. , 1998, Free radical research.

[49]  U. Eriksson,et al.  Vitamin C supplementation of the maternal diet reduces the rate of malformation in the offspring of diabetic rats , 1997, Diabetologia.

[50]  T. Pawson,et al.  Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp‐2 , 1997, The EMBO journal.

[51]  M. Simán Congenital malformations in experimental diabetic pregnancy: aetiology and antioxidative treatment. Minireview based on a doctoral thesis. , 1997, Upsala journal of medical sciences.

[52]  C. Cartwright,et al.  Regulation of the Src tyrosine kinase and Syp tyrosine phosphatase by their cellular association. , 1995, Oncogene.

[53]  E. Margoliash,et al.  The reaction of primate cytochromes c with cytochrome c oxidase. Analysis of the polarographic assay. , 1983, The Journal of biological chemistry.

[54]  G. Morriss,et al.  Effect of oxygen concentration on morphogenesis of cranial neural folds and neural crest in cultured rat embryos. , 1979, Journal of embryology and experimental morphology.

[55]  I W SIZER,et al.  A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. , 1952, The Journal of biological chemistry.