Language Processing by Dynamical Systems

We describe a part of the stimulus sentences of a German language processing ERP experiment using a context-free grammar and represent dieren t processing preferences by its unambiguous partitions. The processing is modeled by deterministic pushdown automata. Using a theorem proven by Moore, we map these automata onto discrete time dynamical systems acting at the unit square, where the processing preferences are represented by a control parameter. The actual states of the automata are rectangles lying in the unit square that can be interpreted as cylinder sets in the context of symbolic dynamics theory. We show that applying a wrong processing preference to a certain input string leads to an unwanted invariant set in the parsers dynamics. Then, syntactic reanalysis and repair can be modeled by a switching of the control parameter | in analogy to phase transitions observed in brain dynamics. We argue that ERP components are indicators of these bifurcations and propose an ERP-like measure of the parsing model.

[1]  A. Fuchs,et al.  A phase transition in human brain and behavior , 1992 .

[2]  Walter J. Freeman,et al.  Neurodynamics: An Exploration in Mesoscopic Brain Dynamics , 2000, Perspectives in Neural Computing.

[3]  James F. Allen Natural language understanding , 1987, Bejnamin/Cummings series in computer science.

[4]  Lewis P. Shapiro,et al.  Categorization of Ambiguous Sentences as a Function of a Changing Prosodic Parameter: A Dynamical Approach , 1999, Journal of psycholinguistic research.

[5]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[6]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[7]  Reinhold Kliegl,et al.  TEMPO-INDUCED TRANSITIONS IN POLYRHYTHMIC HAND MOVEMENTS , 1997 .

[8]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[9]  A. H. Kawamoto Nonlinear dynamics in the resolution of lexical ambiguity: A parallel distributed processing account. , 1993 .

[10]  G. Marcus The Algebraic Mind: Integrating Connectionism and Cognitive Science , 2001 .

[11]  Masaru Tomita,et al.  An Efficient Augmented-Context-Free Parsing Algorithm , 1987, CL.

[12]  T. Gelder,et al.  The dynamical hypothesis in cognitive science , 1998, Behavioral and Brain Sciences.

[13]  Mitchell P. Marcus,et al.  A theory of syntactic recognition for natural language , 1979 .

[14]  Peter Staudacher,et al.  Ansätze und Probleme prinzipienorientierten Parsens , 1990 .

[15]  E. Ba§ar,et al.  EEG-Brain dynamics: Relation between EEG and brain evoked potentials , 1982 .

[16]  D. Hofstadter,et al.  Godel, Escher, Bach: An Eternal Golden Braid , 1979 .

[17]  N. Bohr,et al.  On the notions of causality and complementarity. , 1950, Science.

[18]  A. Friederici,et al.  Electrophysiological Evidence for Two Steps in Syntactic Analysis: Early Automatic and Late Controlled Processes , 1999, Journal of Cognitive Neuroscience.

[19]  P A Robinson,et al.  Simulated Electrocortical Activity at Microscopic, Mesoscopic, and Global Scales , 2003, Neuropsychopharmacology.

[20]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[21]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[22]  R. Badii,et al.  Complexity: Hierarchical Structures and Scaling in Physics , 1997 .

[23]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[24]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[25]  P. Friederici Language Comprehension: A Biological Perspective , 1999, Springer Berlin Heidelberg.

[26]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[27]  Angela D. Friederici,et al.  The Neurobiology of Language Comprehension , 1998 .

[28]  P. Nunez,et al.  Neocortical Dynamics and Human EEG Rhythms , 1995 .

[29]  J. D. Saddy,et al.  Symbolic dynamics of event-related brain potentials. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  E. Basar EEG-brain dynamics: Relation between EEG and Brain evoked potentials , 1980 .

[31]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[32]  J. Shaw EEG-brain dynamics E. Basar Elsevier/North-Holland, Amsterdam, 1980, pp. 411 Dfl. 184 , 1982, Biological Psychology.

[33]  H. Atmanspacher,et al.  Weak Quantum Theory: Complementarity and Entanglement in Physics and Beyond , 2001 .

[34]  Viktor K. Jirsa,et al.  Information Processing in Brain and Behavior Displayed in Large-Scale Scalp Topographies such as EEG and MEG , 2004, Int. J. Bifurc. Chaos.

[35]  Axel Hutt An Analytical Framework for Modeling Evoked and Event-Related Potentials , 2004, Int. J. Bifurc. Chaos.

[36]  C. Moore Generalized one-sided shifts and maps of the interval , 1991 .

[37]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[38]  Matthias Schlesewsky,et al.  The P600 as an indicator of syntactic ambiguity , 2002, Cognition.

[39]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[40]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[41]  Harald Atmanspacher,et al.  Mind and matter as asymptotically disjoint, inequivalent representations with broken time-reversal symmetry. , 2003, Bio Systems.

[42]  Alfred V. Aho,et al.  The Theory of Parsing, Translation, and Compiling , 1972 .

[43]  Christian Wartena,et al.  LIGs with Reduced Derivation Sets , 1999 .

[44]  Juan Uriagereka,et al.  Measuring Language , 2004, Int. J. Bifurc. Chaos.

[45]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[46]  Cristopher Moore,et al.  Generalized shifts: unpredictability and undecidability in dynamical systems , 1991 .

[47]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[48]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[49]  Jeffrey D. Ullman,et al.  Formal languages and their relation to automata , 1969, Addison-Wesley series in computer science and information processing.

[50]  Matthias Schlesewsky,et al.  Parallelizing Grammatical Functions: P600 and P345 Reflect Different Cost of Reanalysis , 2004, Int. J. Bifurc. Chaos.

[51]  J. D. Saddy,et al.  Measuring The Neural Dynamics of Language Comprehension Processes , 2002 .

[52]  Stuart M. Shieber,et al.  Evidence against the context-freeness of natural language , 1985 .

[53]  Niels Bohr,et al.  ON THE NOTIONS OF CAUSALITY AND COMPLEMENTARITY1 , 1948 .