Bayesian estimation of parameters of inverse Weibull distribution

The present paper describes the Bayes estimators of parameters of inverse Weibull distribution for complete, type I and type II censored samples under general entropy and squared error loss functions. The proposed estimators have been compared on the basis of their simulated risks (average loss over sample space). A real-life data set is used to illustrate the results.

[1]  A. Parsian,et al.  On the admissibility and inadmissibility of estimators of scale parameters using an asymmetric loss function , 1993 .

[2]  N. Nematollahi,et al.  On the minimaxity of pitman type estimator under a linex loss function , 1992 .

[3]  Debasis Kundu,et al.  Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data , 2010, Comput. Stat. Data Anal..

[4]  C. Guure,et al.  Bayesian Estimation of Two-Parameter Weibull Distribution Using Extension of Jeffreys' Prior Information with Three Loss Functions , 2012 .

[5]  Wayne Nelson,et al.  Applied life data analysis , 1983 .

[6]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[7]  Nader Ebrahimi,et al.  Bayesian approach to life testing and reliability estimation using asymmetric loss function , 1991 .

[8]  A. Cohen,et al.  Maximum Likelihood Estimation in the Weibull Distribution Based On Complete and On Censored Samples , 1965 .

[9]  S J Pocock,et al.  Long-term survival of patients with breast cancer: a study of the curability of the disease. , 1979, British medical journal.

[10]  J. H. Sheesley Methods for Statistical Analysis of Reliability and Life Data , 1977 .

[11]  Mark E. Flygare,et al.  Maximum Likelihood Estimation For The 2-Parameter Weibull Distribution Based On Interval-Data , 1985, IEEE Transactions on Reliability.

[12]  M. Maswadah,et al.  Conditional confidence interval estimation for the inverse weibull distribution based on censored generalized order statistics , 2003 .

[13]  Debasis Kundu,et al.  Inference Based on Type-II Hybrid Censored Data From a Weibull Distribution , 2008, IEEE Transactions on Reliability.

[14]  Noor Akma Ibrahim,et al.  Bayesian Analysis of the Survival Function and Failure Rate of Weibull Distribution with Censored Data , 2012 .

[15]  T. Bjerkedal Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli. , 1960, American journal of hygiene.

[16]  Necip Doganaksoy,et al.  Weibull Models , 2004, Technometrics.

[17]  A. Zellner Bayesian Estimation and Prediction Using Asymmetric Loss Functions , 1986 .

[18]  R. L. Prentice,et al.  Exponential survivals with censoring and explanatory variables , 1973 .

[19]  R. Calabria,et al.  Point estimation under asymmetric loss functions for left-truncated exponential samples , 1996 .

[20]  Wayne B. Nelson,et al.  Applied Life Data Analysis: Nelson/Applied Life Data Analysis , 2005 .

[21]  S. Bennett,et al.  Log‐Logistic Regression Models for Survival Data , 1983 .