Exact traveling wave solutions and bifurcations of the generalized derivative nonlinear Schrödinger equation

[1]  Jibin Li,et al.  Exact traveling wave solutions and bifurcations of the dual Ito equation , 2015 .

[2]  Jibin Li,et al.  Bifurcations and Exact Solutions of a Modulated Equation in a Discrete Nonlinear Electrical Transmission Line (II) , 2015, Int. J. Bifurc. Chaos.

[3]  Mingshu Peng,et al.  Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications , 2013 .

[4]  Yi Zhang,et al.  Exact solutions and Painlevé analysis of a new (2+1)-dimensional generalized KdV equation , 2012 .

[5]  Bo Tian,et al.  Generalized (2+1)-dimensional Gardner model: bilinear equations, Bäcklund transformation, Lax representation and interaction mechanisms , 2012 .

[6]  Zhang Jin-liang,et al.  Solitary Wave Solutions of a Generalized Derivative Nonlinear Schrödinger Equation , 2008 .

[7]  GUANRONG CHEN,et al.  On a Class of Singular Nonlinear Traveling Wave Equations , 2007, Int. J. Bifurc. Chaos.

[8]  M Lakshmanan,et al.  Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity: Integrability and soliton interaction in non-Kerr media. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Hermann A. Haus,et al.  Solitons in optical communications , 1996 .

[10]  Peter A. Clarkson,et al.  Exact solutions of the multidimensional derivative nonlinear Schrodinger equation for many-body systems of criticality , 1990 .

[11]  Kaplan,et al.  "Robust" bistable solitons of the highly nonlinear Schrödinger equation. , 1987, Physical review. A, General physics.

[12]  R. S. Johnson On the modulation of water waves in the neighbourhood of kh ≈ 1.363 , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.