Identification of Liver X Receptor-Retinoid X Receptor as an Activator of the Sterol Regulatory Element-Binding Protein 1c Gene Promoter

ABSTRACT In an attempt to identify transcription factors which activate sterol-regulatory element-binding protein 1c (SREBP-1c) transcription, we screened an expression cDNA library from adipose tissue of SREBP-1 knockout mice using a reporter gene containing the 2.6-kb mouse SREBP-1 gene promoter. We cloned and identified the oxysterol receptors liver X receptor (LXRα) and LXRβ as strong activators of the mouse SREBP-1c promoter. In the transfection studies, expression of either LXRα or -β activated the SREBP-1c promoter-luciferase gene in a dose-dependent manner. Deletion and mutation studies, as well as gel mobility shift assays, located an LXR response element complex consisting of two new LXR-binding motifs which showed high similarity to an LXR response element recently found in the ABC1 gene promoter, a reverse cholesterol transporter. Addition of an LXR ligand, 22(R)-hydroxycholesterol, increased the promoter activity. Coexpression of retinoid X receptor (RXR), a heterodimeric partner, and its ligand 9-cis-retinoic acid also synergistically activated the SREBP-1c promoter. In HepG2 cells, SREBP-1c mRNA and precursor protein levels were induced by treatment with 22(R)-hydroxycholesterol and 9-cis-retinoic acid, confirming that endogenous LXR-RXR activation can induce endogenous SREBP-1c expression. The activation of SREBP-1c by LXR is associated with a slight increase in nuclear SREBP-1c, resulting in activation of the gene for fatty acid synthase, one of its downstream genes, as measured by the luciferase assay. These data demonstrate that LXR-RXR can modify the expression of genes for lipogenic enzymes by regulating SREBP-1c expression, providing a novel link between fatty acid and cholesterol metabolism.

[1]  A. Admon,et al.  SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene , 1993, Cell.

[2]  M. Brown,et al.  A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. Thewke,et al.  Oleate Potentiates Oxysterol Inhibition of Transcription from Sterol Regulatory Element-1-regulated Promoters and Maturation of Sterol Regulatory Element-binding Proteins* , 1998, The Journal of Biological Chemistry.

[4]  I. Shimomura,et al.  Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Goldstein,et al.  Sterol-resistant transcription in CHO cells caused by gene rearrangement that truncates SREBP-2. , 1994, Genes & development.

[6]  R. Lawn,et al.  ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR. , 2000, Biochemical and biophysical research communications.

[7]  M. Brown,et al.  SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Goldstein,et al.  The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor , 1997, Cell.

[9]  S. Perrey,et al.  Sterol Regulatory Element-binding Protein-1 Is Regulated by Glucose at the Transcriptional Level* , 2000, The Journal of Biological Chemistry.

[10]  A. Tall,et al.  Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element. , 2000, The Journal of clinical investigation.

[11]  M. Foretz,et al.  Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Russell,et al.  Nuclear Orphan Receptors Control Cholesterol Catabolism , 1999, Cell.

[13]  X. Wang,et al.  Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II. Purification and characterization. , 1993, The Journal of biological chemistry.

[14]  H. Shimano,et al.  Promoter Analysis of the Mouse Sterol Regulatory Element-binding Protein-1c Gene* , 2000, The Journal of Biological Chemistry.

[15]  B. Spiegelman,et al.  ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. , 1996, Genes & development.

[16]  S. Kliewer,et al.  Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. Hammer,et al.  Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. , 1998, Genes & development.

[18]  H. Shimano,et al.  A Crucial Role of Sterol Regulatory Element-binding Protein-1 in the Regulation of Lipogenic Gene Expression by Polyunsaturated Fatty Acids* , 1999, The Journal of Biological Chemistry.

[19]  A. Goodridge Dietary regulation of gene expression: enzymes involved in carbohydrate and lipid metabolism. , 1987, Annual review of nutrition.

[20]  R. Hammer,et al.  Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. , 1997, The Journal of clinical investigation.

[21]  A. Tall,et al.  Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. , 2000, The Journal of biological chemistry.

[22]  A. Goodridge,et al.  Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. , 1995, Physiological reviews.

[23]  D. Mangelsdorf,et al.  Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. , 2000, Science.

[24]  D. Mangelsdorf,et al.  Role of LXRs in control of lipogenesis. , 2000, Genes & development.

[25]  H. Shimano,et al.  Sterol Regulatory Element-binding Protein-1 as a Key Transcription Factor for Nutritional Induction of Lipogenic Enzyme Genes* , 1999, The Journal of Biological Chemistry.

[26]  R. Hammer,et al.  Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. , 1998, The Journal of clinical investigation.

[27]  Timothy M. Willson,et al.  Activation of the Nuclear Receptor LXR by Oxysterols Defines a New Hormone Response Pathway* , 1997, The Journal of Biological Chemistry.

[28]  I. Shimomura,et al.  Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. , 1997, The Journal of clinical investigation.

[29]  D. Mangelsdorf,et al.  An oxysterol signalling pathway mediated by the nuclear receptor LXRα , 1996, Nature.

[30]  R. Hammer,et al.  Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. , 1997, The Journal of clinical investigation.

[31]  T. Osborne,et al.  Polyunsaturated Fatty Acids Decrease Expression of Promoters with Sterol Regulatory Elements by Decreasing Levels of Mature Sterol Regulatory Element-binding Protein* , 1998, The Journal of Biological Chemistry.

[32]  I. Shimomura,et al.  Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. Jörnvall,et al.  Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. , 1989, The Journal of biological chemistry.

[34]  B. Spiegelman,et al.  Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. , 1998, The Journal of clinical investigation.

[35]  Mayumi Takahashi,et al.  Fish Oil Feeding Decreases Mature Sterol Regulatory Element-binding Protein 1 (SREBP-1) by Down-regulation of SREBP-1c mRNA in Mouse Liver , 1999, The Journal of Biological Chemistry.

[36]  Jean-Marc A. Lobaccaro,et al.  Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ , 2000 .

[37]  B. Spiegelman,et al.  ADD1/SREBP-1c Is Required in the Activation of Hepatic Lipogenic Gene Expression by Glucose , 1999, Molecular and Cellular Biology.

[38]  X. Hua,et al.  Sterol-Regulated Release of SREBP-2 from Cell Membranes Requires Two Sequential Cleavages, One Within a Transmembrane Segment , 1996, Cell.

[39]  S. Koo,et al.  Glucose regulation of mouse S(14) gene expression in hepatocytes. Involvement of a novel transcription factor complex. , 2000, Journal of Biological Chemistry.

[40]  R. Hammer,et al.  Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. , 1996, The Journal of clinical investigation.

[41]  R. Hammer,et al.  Cholesterol and Bile Acid Metabolism Are Impaired in Mice Lacking the Nuclear Oxysterol Receptor LXRα , 1998, Cell.

[42]  B. Spiegelman,et al.  Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain , 1995, Molecular and cellular biology.

[43]  K. Umesono,et al.  The nuclear receptor superfamily: The second decade , 1995, Cell.

[44]  Joseph L Goldstein,et al.  Regulated Intramembrane Proteolysis A Control Mechanism Conserved from Bacteria to Humans , 2000, Cell.