Ultraviolet-to-far infrared properties of Lyman break galaxies and luminous infrared galaxies at z ∼ 1

We present the first large, unbiased sample of Lyman Break Galaxies (LBGs) at z ~ 1. Far ultraviolet-dropout (1530 A) galaxies in the Chandra Deep Field South have been selected using GALEX data. This first large sample in the z ~ 1 universe provides us with a high quality reference sample of LBGs. We analyzed the sample from the UV to the IR using GALEX, SPITZER, ESO and HST data. The morphology (obtained from GOODS data) of 75 % of our LBGs is consistent with a disk. The vast majority of LBGs with an IR detection are also Luminous Infrared Galaxies (LIRGs). As a class, the galaxies not detected at 24 microns are an order of magnitude fainter relative to the UV compared with those detected individually, suggesting that there may be two types of behavior within the sample. For the IR-bright galaxies, there is an apparent upper limit for the UV dust attenuation and this upper limit is anti-correlated with the observed UV luminosity. Previous estimates of dust attenuations based on the ultraviolet slope are compared to new ones based on the FIR/UV ratio (for LBGs detected at 24 microns), which is usually a more reliable estimator. Depending on the calibration we use to estimate the total IR luminosity, beta-based attenuations A_{FUV} are larger by 0.2 to 0.6 mag. than the ones estimated from FIR/UV ratio. Finally, for IR-bright LBGs, median estimated beta-based SFRs are 2-3 times larger than the total SFRs estimated as SFR_{TOT} = SFR_{UV} + SFR_{IR} while IR-based SFRs provide values below SFR_{TOT} by 15 - 20 %. We use a stacking method to statistically constrain the 24 microns flux of LBGs non individually detected. The results suggest that these LBGs do not contain large amounts of dust.

[1]  Daniela Calzetti,et al.  Far-Infrared Galaxies in the Far-Ultraviolet , 2001, astro-ph/0112352.

[2]  A. Mazure,et al.  The VIMOS VLT deep survey , 2008, 0903.0271.

[3]  Spain.,et al.  Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.

[4]  K. Meisenheimer,et al.  GEMS: Which Galaxies Dominate the z ~ 0.7 Ultraviolet Luminosity Density? , 2004, astro-ph/0408289.

[5]  D. Burgarella,et al.  Spectro-morphology of galaxies: A multi-wavelength (UV-R) classification method , 2005 .

[6]  Dust-induced Systematic Errors in Ultraviolet-derived Star Formation Rates , 2002, astro-ph/0205439.

[7]  F. Hammer,et al.  HST/WFPC2 morphologies and color maps of distant luminous infrared galaxies , 2004, astro-ph/0403476.

[8]  J. Kneib,et al.  Erratum: The history of star formation in dusty galaxies , 1998, astro-ph/9806062.

[9]  Denis Burgarella,et al.  The evolution of the ultraviolet and infrared luminosity densities in the universe at 0 < z < 1 , 2005 .

[10]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2002, astro-ph/0205085.

[11]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[12]  David Elbaz,et al.  A Fossil Record of Galaxy Encounters , 2003, Science.

[13]  Oswald H. W. Siegmund,et al.  THE STAR FORMATION RATE FUNCTION OF THE LOCAL UNIVERSE , 2005 .

[14]  N. Vogt,et al.  Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field , 1996, astro-ph/9612239.

[15]  M. Dickinson,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3* , 1996 .

[16]  A. Szalay,et al.  The Properties of Ultraviolet-luminous Galaxies at the Current Epoch , 2004, astro-ph/0412577.

[17]  R. Genzel,et al.  Dust emission from the lensed Lyman break galaxy cB58 , 2000, astro-ph/0104345.

[18]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[19]  A. Cimatti,et al.  A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 , 2004, astro-ph/0403666.

[20]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[21]  Donald Hamilton,et al.  Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies , 1993 .

[22]  Mid-infrared luminosity as an indicator of the total infrared luminosity of galaxies , 2004, astro-ph/0411196.

[23]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[24]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[25]  F. Duccio Macchetto,et al.  Hubble space telescope imaging of star-forming galaxies at redshifts Z>3 , 1996 .

[26]  O. Fèvre,et al.  15 Micron Infrared Space Observatory Observations of the 1415+52 Canada-France Redshift Survey Field: The Cosmic Star Formation Rate as Derived from Deep Ultraviolet, Optical, Mid-Infrared, and Radio Photometry , 1999 .

[27]  Dust Attenuation in the Nearby Universe: A Comparison between Galaxies Selected in the Ultraviolet and in the Far-Infrared , 2004, astro-ph/0411343.

[28]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[29]  IRAC Mid-Infrared Imaging of the Hubble Deep Field-South: Star Formation Histories and Stellar Masses of Red Galaxies at z > 2* , 2005, astro-ph/0504219.

[30]  Mark Dickinson,et al.  The Great Observatories Origins Deep Survey , 2002, astro-ph/0204213.

[31]  I. Smail,et al.  Rest-frame optical and far-infrared observations of extremely bright Lyman-break galaxy candidates at z~2.5 , 2005, astro-ph/0506490.

[32]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[33]  Mauro Giavalisco,et al.  Lyman-Break Galaxies , 2002 .

[34]  Scott C. Chapman,et al.  A Search for the submillimetre counterparts to Lyman break galaxies , 1999 .

[35]  C. C. Steidel,et al.  Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.

[36]  Casey Papovich,et al.  The Luminosity, Stellar Mass, and Number Density Evolution of Field Galaxies of Known Morphology from z = 0.5 to 3 , 2004, astro-ph/0405001.

[37]  Larkin,et al.  The Rest-Frame Optical Spectrum of MS 1512-cB58. , 2000, The Astrophysical journal.

[38]  Max Pettini Alice E. Shapley Charles C. Steidel Jean-G Giavalisco The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics* , 2001 .

[39]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[40]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.